Centrum Wiskunde \& Informatica

A projection-based partitioning for tomographic reconstruction

Jan-Willem Buurlage (CWI)
Willem Jan Palenstijn (CWI)
Rob Bisseling (Utrecht University)
Joost Batenburg (CWI)
2020-02-13, SIAM PP20, Seattle

Outline

- Tomography, partitioning problems in imaging
- Previous work: GRCB algorithm
- Communication volume, shadows and overlaps
- Continuous model for load balancing
- Communication data structures
- Results and conclusion

CWI

Background

Tomography applications

Tomography

Reconstruction problem

- TODO big data sets, typical sizes, different acquisition geometries
- Distributed 3D volume over many GPUs, minimizing communication

Communication in tomography

- Each combination source position and detector pixel defines a ray, in the solver each ray is traced through the discretized 3D volume
- Tomographic reconstruction problem deal with anywhere between 10^{9} and 10^{11} rays

Partitionings in tomography

- Partition 3D volume while minimizing the line cut
- The line cut is the number of additional parts a line crosses
- Assigning the entire volume to a single GPU is still a partitioning. Good for communication, but defeats the purpose.
- The load of a voxel is the number of rays crossing it. The load of a part is the sum over the loads of its voxels.
- A good partitioning ensures that each part has a similar load.

Previous work

Problem (Tomographic partitioning)

Let V be a cuboid, and G a set of rays through V. Find a p-way partitioning of V, that minimizes the total line cut, while ensuring that the parts have a roughly equal load.

- Recursive bisectioning strategy: recursively split V in two, somewhere along one of the three axes.
- It is possible to find the best partitioning of this kind in $\mathcal{O}(p|G| \log |G|)$ time (GRCB algorithm).
- Communication reduced by between 60% and 90%
- Each GPU guaranteed to perform the same amount of work
(A geometric partitioning method for distributed tomographic reconstruction. JWB, Rob Bisseling, Joost Batenburg. Parallel Computing, 2019. doi:10.1016/j.parco.2018.12.007

CWI

Projection-based partitioning

Shadows

- Reducing the input size: look at projections instead of rays.

Shadow overlap

- Communication volume is proportional to area of the shadow overlaps of parts.

Algorithm sketch

Subroutine: communicationVolume
Input: V_{L}, V_{R}, projection set Π
Output: communication volume Θ
$\Theta \leftarrow 0$
for all $\pi \in \Pi$ do
shadow $_{L} \leftarrow \underbrace{\operatorname{CONVEXHULL}}_{(2}(\underbrace{\operatorname{PROJECT}}_{(1)}\left(\pi, \operatorname{CORNERS}\left(V_{L}\right)\right))$
shadow $_{R} \leftarrow \operatorname{CONVEXHULL}\left(\operatorname{PrOJECT}\left(\pi, \operatorname{CORNERS}\left(V_{R}\right)\right)\right.$
$\Theta \leftarrow \Theta+\underbrace{\text { AREA }}_{4}(\underbrace{\text { shadow }_{L} \cap \text { shadow }_{R}}_{3})$
if consider gradient then
$\Theta \leftarrow \Theta+M \times \operatorname{Area}\left(V_{L} \cap V_{R}\right)$

Continuous load balance

- If we have a candidate partitioning, we can efficiently estimate the communication volume using the part shadows.
- Generating candidate partitionings involve finding a projection-based estimate for the load. (Number of rays crossing voxels).
- Estimate by integrating over ray densities for each source point. Find c such that:

$$
\begin{aligned}
\int_{x_{1}}^{c} \int_{y_{1}}^{y_{2}} & \int_{z_{1}}^{z_{2}} \sum_{k=1}^{|\Pi|} \frac{1}{\left\|\vec{x}-\vec{s}_{k}\right\|_{2}^{2}} d z d y d x \\
& =\int_{c}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} \sum_{k=1}^{|\Pi|} \frac{1}{\left\|\vec{x}-\vec{s}_{k}\right\|_{2}^{2}} d z d y d x .
\end{aligned}
$$

Equal load

- We can reduce the integral to 2D, and then solve numerically:

$$
\begin{array}{r}
\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \sum_{k=1}^{|\Pi|}\left(\frac { 1 } { a _ { k } (x , y) } \left(\arctan \left(\frac{z_{2}-s_{k, z}}{a_{k}(x, y)}\right)\right.\right. \tag{1}\\
\left.\left.\quad-\arctan \left(\frac{z_{1}-s_{k, z}}{a_{k}(x, y)}\right)\right)\right) d y d x
\end{array}
$$

where

$$
a_{k}(x, y)=\sqrt{\left(x-s_{k, x}\right)^{2}+\left(y-s_{k, y}\right)^{2}}
$$

- For certain acquisition geometries, need to consider the cone instead instead of the entire cuboid. We reject samples outside cone.
- Most successful strategy we found so far is an adaption of a standard streaming median find algorithm.

Partitioning results

- Partitioning method: Use continuous load balance to find candidate splits in each direction, use shadow characterization of the communication volume to choose the best split. Recurse on the subvolumes.

Communication data structures

- Overlap structures: finding (possibly non-simple, non-convex) polygons for each set of contributors.

Overlap algorithm

Subroutine: FindFACES
Input: $\pi=\left\{V_{s}\right\}, \pi_{k}$
Output: overlay
overlay \leftarrow EmptyArrangement
for $0 \leq s<p$ do
SHADOW $_{s} \leftarrow \operatorname{CONVEXHULL}\left(\operatorname{ProjEct}\left(\pi_{k}, \operatorname{VERTICES}\left(V_{s}\right)\right)\right)$
ARRANGEMENT $_{s} \leftarrow$ FromFaceTag $^{\left(\text {SHADOW }_{s},[s]\right)}$
MERGE (OVERLAY, $^{\text {ARRANGEMENT }}$ s, CONCATENATE) $^{\text {(}}$

- Subdivision merging algorithms: "find area on map with forests, low precipitation, high temperature".
- We rasterize the resulting faces, and perform aggregrate reads from GPU textures containing image data for communication between nodes

Reconstruction times

Conclusion

- TODO Faster, equal results

