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Outline

• Tomography, partitioning problems in imaging
• Previous work: GRCB algorithm
• Communication volume, shadows and overlaps
• Continuous model for load balancing
• Communication data structures
• Results and conclusion
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Background



Tomography applications
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Tomography
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Reconstruction problem

• TODO big data sets, typical sizes, different acquisition geometries
• Distributed 3D volume over many GPUs, minimizing communication
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Communication in tomography

• Each combination source position and detector pixel defines a ray, in
the solver each ray is traced through the discretized 3D volume

• Tomographic reconstruction problem deal with anywhere between
109 and 1011 rays
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Partitionings in tomography

• Partition 3D volume while minimizing the line cut
• The line cut is the number of additional parts a line crosses
• Assigning the entire volume to a single GPU is still a partitioning.

Good for communication, but defeats the purpose.
• The load of a voxel is the number of rays crossing it. The load of a

part is the sum over the loads of its voxels.
• A good partitioning ensures that each part has a similar load.
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Previous work

Problem (Tomographic partitioning)
Let V be a cuboid, and G a set of rays through V . Find a p-way
partitioning of V , that minimizes the total line cut, while ensuring that
the parts have a roughly equal load.

• Recursive bisectioning strategy: recursively split V in two,
somewhere along one of the three axes.

• It is possible to find the best partitioning of this kind in
O(p|G | log |G |) time (GRCB algorithm).

• Communication reduced by between 60% and 90%
• Each GPU guaranteed to perform the same amount of work

A geometric partitioning method for distributed tomographic reconstruction.
JWB, Rob Bisseling, Joost Batenburg. Parallel Computing, 2019.
doi:10.1016/j.parco.2018.12.007
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Projection-based partitioning



Shadows

• Reducing the input size: look at projections instead of rays.
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Shadow overlap

• Communication volume is proportional to area of the shadow
overlaps of parts.
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Algorithm sketch

Subroutine: communicationVolume
Input: VL, VR , projection set Π
Output: communication volume Θ

Θ← 0
for all π ∈ Π do

shadowL ← convexHull︸ ︷︷ ︸
2

(project︸ ︷︷ ︸
1

(π,corners(VL)))

shadowR ← convexHull(project(π,corners(VR))
Θ← Θ + area︸ ︷︷ ︸

4

(shadowL ∩ shadowR︸ ︷︷ ︸
3

)

if consider gradient then
Θ← Θ + M × area(VL ∩ VR)
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Continuous load balance

• If we have a candidate partitioning, we can efficiently estimate the
communication volume using the part shadows.

• Generating candidate partitionings involve finding a projection-based
estimate for the load. (Number of rays crossing voxels).

• Estimate by integrating over ray densities for each source point.
Find c such that:

∫ c

x1

∫ y2

y1

∫ z2

z1

|Π|∑
k=1

1
||~x −~sk ||22

dz dy dx

=
∫ x2

c

∫ y2

y1

∫ z2

z1

|Π|∑
k=1

1
||~x −~sk ||22

dz dy dx .
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Equal load

• We can reduce the integral to 2D, and then solve numerically:∫ x2

x1

∫ y2

y1

|Π|∑
k=1

( 1
ak(x , y)

(
arctan

(z2 − sk,z

ak(x , y)

)
− arctan

(z1 − sk,z

ak(x , y)

)))
dy dx ,

(1)

where
ak(x , y) =

√
(x − sk,x )2 + (y − sk,y )2.

• For certain acquisition geometries, need to consider the cone instead
instead of the entire cuboid. We reject samples outside cone.

• Most successful strategy we found so far is an adaption of a
standard streaming median find algorithm.
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Partitioning results

• Partitioning method: Use continuous load balance to find candidate
splits in each direction, use shadow characterization of the
communication volume to choose the best split. Recurse on the
subvolumes.
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Communication data structures

• Overlap structures: finding (possibly non-simple, non-convex)
polygons for each set of contributors. 14



Overlap algorithm

Subroutine: FindFaces
Input: π = {Vs}, πk

Output: overlay

overlay← EmptyArrangement
for 0 ≤ s < p do

shadows ← convexHull(project(πk ,vertices(Vs)))
arrangements ← FromFaceTag(shadows , [s])
merge(overlay,arrangements ,concatenate)

• Subdivision merging algorithms: "find area on map with forests, low
precipitation, high temperature".

• We rasterize the resulting faces, and perform aggregrate reads from
GPU textures containing image data for communication between
nodes
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Reconstruction times

8 16 32
p

0.0

50.0

100.0

150.0

200.0
T
(s
)

ccbn (Pleiades)
ccbw (Pleiades)
hcb (Pleiades)
ccbn (ASTRA-MPI)
ccbw (ASTRA-MPI)

16



Conclusion

• TODO Faster, equal results
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