
Sequential sparse matrix–vector
multiplication and tomography

Jan-Willem Buurlage (CWI)
MasterMath: Parallel Computing (2018)

Sparse matrices

Sparse and dense matrices

• Sparse matrices are sparsely populated by nonzero elements.
• Dense matrices have mostly nonzeros.
• Sparse matrix computations save time: operations with zeros can be

skipped or simplified; only the nonzeros must be handled.
• Sparse matrix computations also save memory: only the nonzero

elements need to be stored (together with their location).

1

Sparse matrix example

Figure 1: 93 rows and columns, 785 nonzeros, 8.4 nonzeros per row, 9.1%
density.

2

Matrix statistics

• Number of nonzeros:

nz ≡ nz(A) ≡ |{aij | 0 ≤ i , j < n and aij 6= 0}|.

• Average number of nonzeros per row or column

c ≡ c(A) ≡ nz(A)
n .

• Nonzero density:
d ≡ d(A) ≡ nz(A)

n2 .

• A matrix sparse if nz(A)� n2. Or, equivalently, when c(A)� n or
d(A)� 1.

3

Structure of sparse matrices

• If aij 6= 0 ⇐⇒ aji 6= 0 then we say the matrix is structurally
symmetric.

• This does not mean their values have to be equal. Computationally,
the nonzero pattern is most important, not the the values.

• Diagonal, tridiagonal or more general banded matrices are also
sparse.

• Sparse block matrices have a limited number of blocks, but these
blocks can themselves be dense.

4

Irregular vs regular

• Regular algorithms have a computational cost that does not depend
on the input. Examples of such algorithms you are familiar with are
the FFT, LU, and dense matrix–matrix multiplication.

• Irregular algorithms, however, depend on the input. For sparse
computations, they usually depend on the nonzero pattern of the
matrix.

• Designing efficient irregular algorithms is a challenge. The ultimate
goal is to make the algorithm as efficient as possible for any input.

5

Sequential algorithm

• An example of an irregular algorithm is the sparse matrix–vector
product (SpMV).

• Given a sparse matrix A, and a dense vector v , compute u ≡ Av .

forall (i , j) such that 0 ≤ i , j < n and aij 6= 0 do
ui ← ui + aijvj

• The nonzero test aij 6= 0 is never executed in practice. Rather, a
sparse data structure is used, or the nonzeros are generated
on-the-fly.

6

Applications of SpMV

• Sparse matrices are the rule rather than the exception.
• In many applications, variables are connected to only a few others,

leading to sparse matrices.
• Sparse matrices occur in various application areas:

• transition matrices in Markov models;
• finite-element matrices in engineering;
• linear programming matrices in optimisation;
• weblink matrices in Google PageRank computation.
• molecular dynamics

• The sequential computation is simple, but its parallelisation is a big
challenge.

7

Power method

• Power methods are based on repeated application of A to some
initial vector. It finds the dominant eigenvector.

• Let A be a transition matrix, and ~x a vector of state frequencies
(i.e., xi is the relative frequency of state i).

• Computing A~x ,A2~x ,A3~x , . . . until convergence, we find a vector
satisfying A~x = ~x . This is the steady state.

8

Iterative methods

• More generally, sparse matrix—vector multiplication is the main
computation step in iterative solution methods for linear systems or
eigensystems.

• Iterative methods start with an initial guess x0 and then successively
improve the solution by finding better approximations xk ,
k = 1, 2, . . ., until the error is tolerable.

• Examples:
• Linear systems Ax = b, solved by the conjugate gradient (CG)

method or MINRES, GMRES, QMR, BiCG, Bi-CGSTAB, IDR, SOR,
FOM, . . .

• Eigensystems Ax = λx solved by the Lanczos method,
Jacobi–Davidson, . . .

9

Tomography

Introduction

• Tomography is a non-destructive imaging technique
• Penetrating rays (e.g. X-rays) are sent through an object from

various angles, and their intensity is measured
• Leads to 2D projection images, from which a 3D volume is

reconstructed

10

Example of tomographic measurement

V

11

Applications of tomography

12

Acquisition geometries

Laminography

Single axis

Dual axis

Helical cone beam

Tomosynthesis

13

Tomographic reconstruction

• Projection matrix W , solve:

W~x = ~b,

with ~x the image, and ~b the projection data.
• The projection data consists of a series of 2D images (the ’X-ray

shadows’ of the object), and are measured. The 3D image is
unknown, and is to be reconstructed.

• Rows correspond to rays, from a source to a detector pixel. Columns
correspond to volume elements, or voxels.

• Intersections of rays with voxels, give rise to nonzeros in W .
• Note: W is sparse, for n voxels we have O(n1/3) nonzeros in each

row.

14

Example of Projection Matrix

V

1 2 3

4 5 6

7 8 9

A

1 2 3 4 5 6 7 8 9

15

Example of Projection Matrix (II)

V

1 2 3

4 5 6

7 8 9

A

1 2 3 4 5 6 7 8 9

16

Spy plot of a projection matrix

Figure 2: Parallel beam geometry matrix of size 100 × 125.

17

Large-scale tomography

• For tomographic reconstruction, the SpMVs W~x and W T~y are the
most expensive operations.

• 3D volumes with at least 10003 voxels. W then has ≥ O(1012)
entries ⇒ TBs of data!

• Not stored explicitly, generated from the acquisition geometry.

18

Distributed-memory tomographic image reconstruction

• In tomography, we are reconstructing (i.e. compute based on
projection data) a 3D image.

• If we want to do this in parallel, we can make each processor
responsible for reconstructing only a (small) part of the volume.

• However, rays cross the the entire volume, coupling these parts
together. How do we partition the image to minimize the coupling?

19

Geometric partitioning problem

• We are given a cuboid, and a set of lines intersecting this cube.
• This cuboid is to be partitioned into p parts.
• A line crossing n parts has n − 1 cuts.
• What partitioning minimizes the total number of cuts?

20

Recursive bisectioning

• Idea: Split the volume into two subvolumes recursively.
• Straightforward to show that this can be done independently from

previous splits.
• When splitting a subvolume, the effect on the overall

communication volume is the same as that of the subproblem.

21

Interface intersection

• Communication volume equals number of lines through interface

V ′

V ′′

22

Bisectioning algorithm

• Choose the splitting interface with the minimum number of rays
passing through it.

• Evenly distribute the workload
• Computational weight of a voxel is the number of lines crossing the

voxel, i.e. number of nonzeros in its column
• Total computational weight of a subvolume can be computed using

3D prefix sums and application of inclusion-exclusion principle.

23

Plane sweep

• We sweep a candidate interface along the volume, and keep track of
the current number of rays passing through it.

• Communication volume only changes at coordinates where a ray
intersects the boundary!

• Compute intersections once, sweep for all three axes sorting the
coordinates each time.

24

Example of plane sweep (I)

V

25

Example of plane sweep (II)

V

26

Example of plane sweep (III)

V

27

Results

• This gives us an efficient partitioning algorithm, runtime dominated
by the sorting of coordinates: O(m log(m)).

• Geometric recursive coordinate partitioning (GRCB).
• Currently, slab partitionings of the volume along the rotation axis

are used.

28

Partitioning results

• What constitutes a good partitioning depends heavily on the
acquisition geometry.

• With a good partitioning, the amount of data that is communicated
between processors is low.

29

Conclusion

• Sparse matrices are everywhere in scientific computing.
• Tomographic imaging is an important technique for science,

medicine, cultural preservation and industry.
• Exploiting sparsity can save a lot of computational work. It requires,

however, the design of specialized and irregular algorithms.
• Sequential sparse computations are relatively straightforward, but

their parallelisation is a big challenge. Communication
considerations often lead to interesting partitioning problems.

A geometric partitioning method for distributed tomographic reconstruction.
Jan-Willem Buurlage, Rob Bisseling, Joost Batenburg. (Submitted to Parallel
Computing)

30

Bulk: a Modern C++ BSP Interface

Jan-Willem Buurlage (CWI)
MasterMath: Parallel Computing (2018)

BSP today

• For high-performance computing on distributed-memory systems,
BSP is still a (if not the) leading model.

• In the last 10 years or so, it has grown again in popularity. It has
also found widespread use in industry (MapReduce / Pregel).

• BSP programming usually done using MPI or the various Apache
projects (Hama, Giraph, Hadoop).

1

Google MapReduce

• Standard example: word count. The map takes a (file, content) pair,
and emits (word, 1) pairs for each word in the content. The reduce
function sums over all mapped pairs with the same word.

• The map and reduce are performed in parallel, and are both followed
by communication and a bulk synchronization, which means
MapReduce ⊂ BSP!1

1MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean and Sanjay
Ghemawat (2004)

2

Google Pregel

BSP for graph processing, used by Google2 and Facebook3.

The high-level organization of Pregel programs is inspired by
Valiant’s Bulk Synchronous Parallel model. Pregel
computations consist of a sequence of iterations, called
supersteps . . . It can read messages sent to V in superstep S
1, send messages to other vertices that will be received at
superstep S + 1 . . .

2Pregel: A System for Large-Scale Graph Processing – Malewicz et al. (2010)
3One Trillion Edges: Graph Processing at Facebook-Scale - Avery Ching et al (2015)

3

Modern BSP

• These frameworks are good for big data analytics, not for
high-performance scientific computing.

• =⇒ Most scientific software still built on top of MPI.
• Modern programming languages have novel features (safety,

abstractions) which can aid parallel programming.

4

BSP interfaces

• There are mature implementations of BSPlib for shared and
distributed-memory systems4.

• Many Big Data frameworks are based on (restricted) BSP
programming, such as MapReduce (Apache Hadoop), Pregel
(Apache Giraph) and so on.

• BSP interfaces that are not based on BSPlib include BSML and
Apache Hama.

4e.g. Multicore BSP (for C) by Albert Jan Yzelman and BSPonMPI by Wijnand
Suijlen

5

BSPlib

#include <bsp.h>

int main() {
bsp_begin(bsp_nprocs());
int s = bsp_pid();
int p = bsp_nprocs();
printf("Hello World from processor %d / %d", s, p);
bsp_end();

return 0;
}

6

BSPlib: Registering and using variables

int x = 0;
bsp_push_reg(&x, sizeof(int));
bsp_sync();

int b = 3;
bsp_put((s + 1) % p, &b, &x, 0, sizeof(int));

int c = 0;
bsp_get((s + 1) % p, &x, 0, &c, sizeof(int));

bsp_pop_reg(&x);
bsp_sync();

7

BSPlib: Sending messages

int tagsize = sizeof(int);
bsp_set_tagsize(&tagsize);
bsp_sync();

int tag = 1;
int payload = 42 + s;
bsp_send((s + 1) % p, &tag, &payload, sizeof(int));
bsp_sync();

8

BSPlib: Receiving messages

int packets = 0;
int accum_bytes = 0;
bsp_qsize(&packets, &accum_bytes);

int payload_in = 0;
int payload_size = 0;
int tag_in = 0;
for (int i = 0; i < packets; ++i) {

bsp_get_tag(&payload_size, &tag_in);
bsp_move(&payload_in, sizeof(int));
printf("payload: %i, tag: %i", payload_in, tag_in);

}

9

A modern BSP interface

• Modern programming languages focus on safety and zero-cost
abstractions to increase programmer productivity, without sacrificing
performance.

• A modern BSP interface should also have this focus. We want
correct, safe and clear implementations of BSP programs without
taking a performance hit.

• Modern C++ has a large user base, is widely supported, with a
good set of features and (support for) abstractions.

10

Bulk: A modern BSP interface

• Bulk is a modern BSPlib replacement.
• Focuses on memory safety, portability, code reuse, and ease of

implementation of BSP algorithms.
• Flexible backend architecture. Bulk programs target shared,

distributed, or hybrid memory systems.
• Support for various algorithmic skeletons, and utility features for

logging, benchmarking, and reporting.

11

Bulk: Basics

• A BSP computer is captured in an environment (e.g. an MPI
cluster, a multi-core processor or a many-core coprocessor).

• In an environment, an SPMD block can be spawned.
• The processors running this block form a parallel world, that can be

used to communicate, and for obtaining information about the local
process.

bulk::backend::environment env;
env.spawn(env.available_processors(), spmd);

void spmd(bulk::world& world) {
world.log("Hello world from %d / %d\n",

world.rank(),
world.active_processors());

}

12

Bulk: Distributed variables (I)

• Registering and deregistering (bsp_push_reg) is replaced by
distributed variables.

auto x = bulk::var<int>(world);
auto y = x(t).get();
x(t) = value;

• These variables are var objects. Their value is generally different on
each processor.

• References to remote values are captured in image objects, and can
be used for reading and writing.

13

Bulk: Distributed variables (II)

auto x = bulk::var<int>(world);
auto t = world.next_rank();
x(t) = 2 * world.rank();
world.sync();
// x now equals two times the previous ID

auto b = x(t).get();
world.sync();
// b.value() now equals two times the local ID

14

Bulk: Coarrays (I)

• Distributed variables work well for communicating single values.
• For communication based on (sub)arrays we have coarray objects,

loosely inspired by Coarray Fortran.

auto xs = bulk::coarray<int>(world, 10);
xs(t)[5] = 3;
auto y = xs(t)[5].get();

• Images to remote subarrays of a coarray xs, are obtained as for
variables by xs(t), and can be used to access the remote array.

15

Bulk: Coarrays (II)

auto xs = bulk::coarray<int>(world, 4);
auto t = world.next_rank();
xs[0] = 1;
xs(t)[1] = 2 + world.rank();
xs(t)[{2, 4}] = {123, 321};
world.sync();
// xs is now [1, 2 + world.prev_rank(), 123, 321]

16

Bulk: Message passing queues (I)

• One-sided mailbox communication using message passing, which in
Bulk is carried out using a queue. Greatly simplified compared to
previous BSP interfaces, without losing power or flexibility.

// single integer, and zero or more reals
auto q1 = bulk::queue<int, float[]>(world);
// sending matrix nonzeros around (i, j, a_ij)
auto q2 = bulk::queue<int, int, float>(world);

• Message structure is defined in the construction of a queue:
optionally attach tags, or define your own record structure.

17

BSPlib: Sending messages

int tagsize = sizeof(int);
bsp_set_tagsize(&tagsize);
bsp_sync();

int tag = 1;
int payload = 42 + s;
bsp_send((s + 1) % p, &tag, &payload, sizeof(int));
bsp_sync();

18

Bulk: Sending messages

auto q = bulk::queue<int, int>(world);
q(world.next_rank()).send(1, 42 + s);
world.sync();

19

BSPlib: Receiving messages

int packets = 0;
int accum_bytes = 0;
bsp_qsize(&packets, &accum_bytes);

int payload_in = 0;
int payload_size = 0;
int tag_in = 0;
for (int i = 0; i < packets; ++i) {

bsp_get_tag(&payload_size, &tag_in);
bsp_move(&payload_in, sizeof(int));
printf("payload: %i, tag: %i", payload_in, tag_in);

}

20

Bulk: Receiving messages

for (auto [tag, content] : queue) {
world.log("payload: %i, tag: %i", content, tag);

}

21

Bulk: Beyond tags

• In addition, Bulk supports sending arbitrary data either using custom
structs, or by composing messages on the fly. For example, to send a
3D tensor element with indices and its value.

auto q = bulk::queue<int, int, int, float>(world);
q(world.next_rank()).send(1, 2, 3, 4.0f);
q(world.next_rank()).send(2, 3, 4, 5.0f);
world.sync();

for (auto [i, j, k, value] : queue) {
world.log("element: A(%i, %i, %i) = %f", i, j, k, value);

}

• Multiple queues can be constructed, which eliminates a common use
case for tags.

22

Bulk: Skeletons

// dot product
auto xs = bulk::coarray<int>(world, s);
auto ys = bulk::coarray<int>(world, s);
auto result = bulk::var<int>(world);
for (int i = 0; i < s; ++i) {

result.value() += xs[i] * ys[i];
}
auto alpha = bulk::foldl(result,

[](int& lhs, int rhs) { lhs += rhs; });

// finding global maximum
auto maxs = bulk::gather_all(world, max);
max = *std::max_element(maxs.begin(), maxs.end());

23

Bulk: Example application (I)

• In parallel regular sample sort, there are two communication steps.
1. Broadcasting p equidistant samples of the sorted local array.
2. Moving each element to the appropriate remote processor.

// Broadcast samples
auto samples = bulk::coarray<T>(world, p * p);
for (int t = 0; t < p; ++t)

samples(t)[{s * p, (s + 1) * p}] = local_samples;
world.sync();

// Contribution from P(s) to P(t)
auto q = bulk::queue<int, T[]>(world);
for (int t = 0; t < p; ++t)

q(t).send(block_sizes[t], blocks[t]);
world.sync();

24

Bulk: Word count

• The word count example (MapReduce) can be implemented in Bulk
as follows. First the map phase:

auto words = bulk::queue<std::string>(world);
if (s == 0) {

auto f = std::fstream("examples/data/alice.txt");
std::string word;
while (f >> word) {

words(hash(word) % p).send(word);
}

}
world.sync();

25

Word count (II)

• Then the reduce phase:

auto counts = std::map<std::string, int>{};
for (auto word : words) {

if (counts.find(word) != counts.end()) {
counts[word]++;

} else {
counts[word] = 1;

}
}
auto report = bulk::queue<std::string, int>(world);
for (auto [word, count] : counts) {

report(0).send(word, count);
}
world.sync();

26

Bulk: Shared-memory results

Table 1: Speedups of parallel sort and parallel FFT compared to std::sort
from libstdc++, and the sequential algorithm from FFTW 3.3.7, respectively.

n p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
Sort 220 0.93 1.95 3.83 6.13 8.10 12.00

221 1.01 2.08 4.11 7.28 10.15 15.31
222 0.88 1.82 3.58 5.99 10.27 13.92
223 0.97 1.90 3.63 6.19 11.99 16.22
224 0.93 1.79 3.21 6.33 8.47 14.76

FFT 223 0.99 1.07 2.08 2.77 5.60 5.51
224 1.00 1.26 2.14 3.07 5.68 6.08
225 1.00 1.23 2.22 3.09 5.80 6.05
226 0.99 1.24 2.01 3.28 5.48 5.97

27

Bulk: Shared-memory benchmarks

Table 2: The BSP parameters for MCBSP and the C++ thread backend for
Bulk.

Method r (GFLOP/s) g (FLOPs/word) l (FLOPs)
MCBSP (spinlock) 0.44 2.93 326
MCBSP (mutex) 0.44 2.86 10484
Bulk (spinlock) *new* 0.44 5.55 467
Bulk (mutex) 0.44 5.65 11702

28

Outlook

• Further performance improvements for the thread and the MPI
backends.

• Implementing popular BSP algorithms to provide case studies as a
learning tool for new Bulk users.

• Applications: tomography, imaging science, sparse linear algebra.
• Currently working on syntax/support for distributions: partitionings,

multi-indexing, 2D/3D computations.

29

Bulk: Partitionings

auto phi = bulk::cyclic_partitioning<1>({size}, {p});
auto psi = bulk::cyclic_partitioning<2, 2>({n, n}, {M, N});
auto chi = bulk::block_partitioning<2, 2>({n, n}, {M, N});
// And: irregular, cartesian, tree, ...

// In LU decomposition: is a_kk assigned to us?
if (phi.owner({k, k}) == world.rank())
// What is the global index of local element (i, j)
phi.local_to_global({i, j}, {s, t})
// What is the size of my local data
phi.local_size(world.rank())
// What is my ’multi-index’?
auto [s, t] = bulk::unflatten<2>(phi.grid(), world.rank());
// What processor owns global element (i, j)?
phi.grid_owner({i, j})

30

Conclusion

• Modern interface for writing parallel programs, safer and clearer code
• Works together with other libraries because of generic containers

and higher-level functions.
• Works across more (mixed!) platforms than other libraries.
• Open-source, MIT licensed. Documentation at

http://jwbuurlage.github.io/Bulk. Current version: v1.1.0.

MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean and
Sanjay Ghemawat (2004)

Pregel: A System for Large-Scale Graph Processing – Malewicz et al. (2010)

One Trillion Edges: Graph Processing at Facebook-Scale - Avery Ching et al
(2015)

Buurlage JW., Bannink T., Bisseling R.H. (2018) Bulk: A Modern C++ Interface
for Bulk-Synchronous Parallel Programs. Euro-Par 2018: Parallel Processing.

31

