
Bulk: a Modern C++ Interface for
Bulk-Synchronous Parallel Programs

Jan-Willem Buurlage (CWI)
Tom Bannink (CWI)
Rob Bisseling (Utrecht University)
2018-08-29, Euro-Par 2018, Turin



Overview

• Introduction to BSP
• BSP programming interfaces
• Bulk
• Conclusion

1



BSP

• The BSP model provides a way to structure and analyze parallel
computations.

• An (abstract) BSP computer has p processors, which all have access
to a communication network.

1 2 3 4 . . . p

• Other parameters are the raw processing speed r , the
communication time per data word g , and the latency l .

• The cost T of a BSP program is expressed in terms of the
parameters (p, r , g , l).

2



BSP (II)

• A BSP program is structured in a number of supersteps.
• A superstep has a computation phase and a communication phase.
• After a superstep, a barrier (bulk) synchronization is performed. The

next superstep begins after all communication has finished
• Each processor runs the same program, but on different data

(SPMD).

3



BSP (Supersteps)

0

1

2

3

◦

◦

◦

◦

◦

◦

◦

◦

Computation Communication

4



BSPlib

• The BSP model is a powerful abstraction for developing portable
parallel algorithms.

• The BSPlib standard describes a collection of primitives which can
be used for writing BSP programs.

#include <bsp.h>

int main() {
bsp_begin(bsp_nprocs());
int s = bsp_pid();
int p = bsp_nprocs();
printf("Hello World from processor %d / %d", s, p);
bsp_end();

return 0;
}

5



BSPlib (II)

• In BSPlib, variables can be registered by their address. They can
then be written to/read from remotely.

int x = 0;
bsp_push_reg(&x, sizeof(int));
bsp_sync();

int b = 3;
bsp_put((s + 1) % p, &b, &x, 0, sizeof(int));

int c = 0;
bsp_get((s + 1) % p, &x, 0, &c, sizeof(int));

bsp_pop_reg(&x);
bsp_sync();

6



Other BSP interfaces

• There are mature implementations of BSPlib for shared and
distributed-memory systems1.

• Many Big Data frameworks are based on (restricted) BSP
programming, such as MapReduce (Apache Hadoop), Pregel
(Apache Giraph) and so on.

• BSP interfaces that are not based on BSPlib include BSML and
Apache Hama.

1e.g. Multicore BSP (for C) by Albert Jan Yzelman and BSPonMPI by Wijnand
Suijlen

7



A modern BSP interface

• A focus of many modern (implementations of) programming
languages is on safety and zero-cost abstractions that increase
programmer productivity, without sacrificing performance.

• We think a modern BSP interface should also have this focus. We
want correct, safe and clear implementations of BSP programs
without taking a performance hit.

• For us, modern C++ is a good fit. Large user base, widely
supported, with a good set of features and (support for)
abstractions.

8



Bulk: A modern BSP interface

• Bulk is a modern BSPlib replacement.
• Focuses on memory safety, portability, code reuse, and ease of

implementation of BSP algorithms.
• Flexible backend architecture. Bulk programs target shared,

distributed, or hybrid memory systems.
• Support for various algorithmic skeletons, and utility features for

logging, benchmarking, and reporting.

9



Bulk: Basics

• A BSP computer is captured in an environment (e.g. an MPI
cluster, a multi-core processor or a many-core coprocessor).

• In an environment, an SPMD block can be spawned.
• The processors running this block form a parallel world, that can be

used to communicate, and for obtaining information about the local
process.

bulk::backend::environment env;
env.spawn(env.available_processors(), [](auto& world) {

world.log("Hello world from %d / %d\n",
world.rank(),
world.active_processors());

});

10



Bulk: Distributed variables (I)

• Distributed variables are var objects. Their value is generally
different on each processor.

• References to remote values are captured in image objects, and can
be used for reading and writing.

auto x = bulk::var<int>(world);
auto y = x(t).get();
x(t) = value;

11



Bulk: Distributed variables (II)

auto x = bulk::var<int>(world);
auto t = world.next_rank();
x(t) = 2 * world.rank();
world.sync();
// x now equals two times the previous ID

auto b = x(t).get();
world.sync();
// b.value() now equals two times the local ID

12



Bulk: Coarrays (I)

• For communication based on (sub)arrays we have coarray objects,
loosely inspired by Coarray Fortran.

• Images to remote subarrays of a coarray xs, are obtained as for
variables by xs(t), and can be used to access the remote array.

auto xs = bulk::coarray<int>(world, 10);
xs(t)[5] = 3;
auto y = xs(t)[5].get();

13



Bulk: Coarrays (II)

auto xs = bulk::coarray<int>(world, 4);
auto t = world.next_rank();
xs[0] = 1;
xs(t)[1] = 2 + world.rank();
xs(t)[{2, 4}] = {123, 321};
world.sync();
// xs is now [1, 2 + world.prev_rank(), 123, 321]

14



Bulk: Message passing queues (I)

• One-sided mailbox communication using message passing, which in
Bulk is carried out using a queue. Greatly simplified compared to
previous BSP interfaces, without losing power or flexibility.

• Message structure is defined in the construction of a queue:
optionally attach tags, or define your own record structure.

// single integer, and zero or more reals
auto q1 = bulk::queue<int, float[]>(world);
// sending matrix nonzeros around (i, j, a_ij)
auto q2 = bulk::queue<int, int, float>(world);

15



Bulk: Message passing queues (II)

// queue containing simple data
auto numbers = bulk::queue<int>(world);
numbers(t).send(1);
numbers(t).send(2);
world.sync();
for (auto value : numbers)

world.log("%d", value);

// queue containing multiple components
auto index_tuples = bulk::queue<int, int, float>(world);
index_tuples(t).send({1, 2, 3.0f});
index_tuples(t).send({3, 4, 5.0f});
world.sync();
for (auto [i, j, k] : index_tuples)

world.log("(%d, %d, %f)", i, j, k);
16



Bulk: Skeletons

// dot product
auto xs = bulk::coarray<int>(world, s);
auto ys = bulk::coarray<int>(world, s);
auto result = bulk::var<int>(world);
for (int i = 0; i < s; ++i) {

result.value() += xs[i] * ys[i];
}
auto alpha = bulk::foldl(result,

[](int& lhs, int rhs) { lhs += rhs; });

// finding global maximum
auto maxs = bulk::gather_all(world, max);
max = *std::max_element(maxs.begin(), maxs.end());

17



Bulk: Example application

• In parallel regular sample sort, there are two communication steps.
1. Broadcasting p equidistant samples of the sorted local array.
2. Moving each element to the appropriate remote processor.

// Broadcast samples
auto samples = bulk::coarray<T>(world, p * p);
for (int t = 0; t < p; ++t)

samples(t)[{s * p, (s + 1) * p}] = local_samples;
world.sync();

// Contribution from P(s) to P(t)
auto q = bulk::queue<int, T[]>(world);
for (int t = 0; t < p; ++t)

q(t).send(block_sizes[t], blocks[t]);
world.sync();

18



Bulk: Shared-memory results

Table 1: Speedups of parallel sort and parallel FFT compared to std::sort
from libstdc++, and the sequential algorithm from FFTW 3.3.7, respectively.

n p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
Sort 220 0.93 1.95 3.83 6.13 8.10 12.00

221 1.01 2.08 4.11 7.28 10.15 15.31
222 0.88 1.82 3.58 5.99 10.27 13.92
223 0.97 1.90 3.63 6.19 11.99 16.22
224 0.93 1.79 3.21 6.33 8.47 14.76

FFT 223 0.99 1.07 2.08 2.77 5.60 5.51
224 1.00 1.26 2.14 3.07 5.68 6.08
225 1.00 1.23 2.22 3.09 5.80 6.05
226 0.99 1.24 2.01 3.28 5.48 5.97

19



Bulk: Shared-memory benchmarks

Table 2: The BSP parameters for MCBSP and the C++ thread backend for
Bulk.

Method r (GFLOP/s) g (FLOPs/word) l (FLOPs)
MCBSP (spinlock) 0.44 2.93 326
MCBSP (mutex) 0.44 2.86 10484
Bulk (spinlock) *new* 0.44 5.55 467
Bulk (mutex) 0.44 5.65 11702

20



Outlook

• Further performance improvements for the thread and the MPI
backends.

• Implementing popular BSP algorithms to provide case studies as a
learning tool for new Bulk users.

• Currently working on syntax/support for distributions: partitionings,
multi-indexing, 2D/3D computations.

• Applications: tomography, imaging science, sparse linear algebra.

21



Conclusion

• Bulk is a modern BSP interface and library implementation.
• Many desirable features

• Memory safety
• Support for generic implementations of algorithms
• Portability
• Encapsulated state
• . . .

• Allows for clear and concise implementations of BSP algorithms.
Furthermore, we show good scalability of BSP implementations of
two O(n log n) algorithms, for which nearly all input data have to be
communicated.

• The performance of Bulk is close to that of a state-of-the-art BSPlib
implementation.

• Enables hybrid shared/distributed-memory programming with the
efficiency of exploiting shared memory but without the pain of using
two APIs (MPI+OpenMP).

22


