# Geometric Partitioning for Tomography

Jan-Willem Buurlage, CWI Amsterdam Rob Bisseling, Utrecht University Joost Batenburg, CWI Amsterdam

2018-09-03, Tokyo, Japan

SIAM Conference on Parallel Processing for Scientific Computing

- 1. Tomography and tomographic reconstruction
- 2. Partitioning for distributed tomography
- 3. Geometric recursive coordinate bisectioning (GRCB)
- 4. Results and conclusion

- Tomography is a non-destructive imaging technique
- Penetrating rays (e.g. X-rays) are sent through an object from various angles, and their intensity is measured
- Leads to 2D projection images, from which a 3D volume is reconstructed

#### Example of tomographic measurement



## Acquisition geometries





Single axis



Dual axis



Helical cone beam



• Tomosynthesis

Projection matrix W, solve:

$$W \mathbf{x} = \mathbf{b},$$

with  $\mathbf{x}$  the *image*, and  $\mathbf{b}$  the *projection data*.

- Rows correspond to rays, from a source to a detector pixel.
   Columns correspond to volume elements, or voxels.
- Intersections of rays with voxels, give rise to nonzeros in *W*.
- Note: W is sparse, for n voxels we have O(n<sup>1/3</sup>) nonzeros in each row.

## Example of projection matrix (2D) (I)



## Example of Projection Matrix (2D) (II)







W

- For simultaneous iterative reconstruction, the SpMVs Wx and W<sup>T</sup>y are the most expensive operations.
- 3D volumes with at least 1000<sup>3</sup> voxels. W then has ≥ O(10<sup>12</sup>) entries ⇒ TBs of data!
- Not stored explicitly, generated from the acquisition geometry.

## Large-scale tomography (cont.)

- We parallelize the forward projection and backward projection.
- How to distribute W? Current practice (slabs) leads to prohibitively large communication volumes.
- Available sparse matrix partitioning methods do not scale, since the matrix cannot be stored explicitly.



- When performing an SpMV in parallel, we distribute the data (W, x, b) over processing elements.
- The distribution of the nonzeros of W are leading; the distribution of x and b follow.
- Two types of partitionings:
  - assign rows, or columns, to a single processor (1D partitioning).
  - treat all nonzeros independently (2D partitioning).
- Warning: 1D partitioning  $\rightarrow$  3D partitioning in space

#### Distribution example



- We exploit the geometric structure of the problem to find a partitioning<sup>1</sup>.
- Generate a 3D cuboid partitioning of the object volume, corresponding to a 1D column partitioning of the matrix.
- The communication volume is equal to the total line cut, the number of parts crossed by a ray.

<sup>&</sup>lt;sup>1</sup>A geometric partitioning method for distributed tomographic reconstruction, JB, Rob H. Bisseling, K. Joost Batenburg (under revision)

#### Example of line cut (2D)

 Overlapping *shadows* of subvolumes on the detector show which pixels define cut lines



- Idea: Split the volume into two subvolumes recursively.
- Straightforward to show that this can be done independently from previous splits.
- When splitting a subvolume, the effect on the overall communication volume is the same as that of the subproblem.

## Interface intersection (2D)

 Communication volume equals number of lines through interface



- Choose the splitting interface with the minimum number of rays passing through it.
- Evenly distribute the workload
- Computational weight of a voxel is the number of lines crossing the voxel, i.e. number of nonzeros in its column
- Total computational weight of a subvolume can be computed using 3D prefix sums and application of inclusion-exclusion principle.

- We sweep a candidate interface along the volume, and keep track of the current number of rays passing through it.
- Communication volume only changes at coordinates where a ray intersects the boundary!
- Compute intersections once, sweep for all three axes sorting the coordinates each time.

## Example of plane sweep (2D) (I)



## Example of plane sweep (2D) (II)



# Example of plane sweep (2D) (III)



- This gives us an efficient partitioning algorithm, runtime dominated by the sorting of coordinates: O(m log(m)).
- Geometric recursive coordinate partitioning (GRCB).
- Currently, slab partitionings of the volume along the rotation axis are used.

## Results (Single-axis parallel beam)





## Results (Dual-axis parallel beam)





#### Results (Cone beam with narrow angle)





#### Results (Cone beam with wide angle)





## Results (Helical cone beam)





#### Results (Laminography with narrow angle)



## Results (Laminography with wide angle)



## **Results (Tomosynthesis)**





- Bulk<sup>2</sup> is a BSP library for modern C++
- Provides a safe and simple layer on top of low-level technologies, such as C++ threads or MPI
- Unified and *modern* interface for distributed and parallel computing.

```
auto q = bulk::queue<int, T>(world);
for (auto [target, local, remote] : shared_pixels) {
    q(target).send(remote, projs[local]);
}
```

<sup>&</sup>lt;sup>2</sup>https://jwbuurlage.github.io/Bulk

### Results (Communication volume)

• Results for p = 256

| Geometry | V (slab)          | V (GRCB)      | Improvement |
|----------|-------------------|---------------|-------------|
| SAPB     | 0                 | 0             | 0%          |
| DAPB     | $1 	imes 10^{10}$ | $8	imes 10^8$ | 92%         |
| CCBn     | $1 	imes 10^9$    | $3	imes 10^8$ | 69%         |
| CCBw     | $2	imes 10^9$     | $4	imes 10^8$ | 82%         |
| HCB      | $2 	imes 10^9$    | $4	imes 10^8$ | 71%         |
| LAMn     | $3	imes 10^9$     | $4	imes 10^8$ | 89%         |
| LAMw     | $5	imes 10^9$     | $6	imes 10^8$ | 90%         |
| TSYN     | $2	imes 10^9$     | $3	imes 10^8$ | 87%         |

| p  | 1D block | GRCB    | Mondriaan |
|----|----------|---------|-----------|
| 16 | 111248   | 111207  | 108741    |
| 32 | 233095   | 216620  | 210330    |
| 64 | 3928222  | 2505646 | 2604930   |

- GRCB versus Mondriaan (1D column) with medium-grain splitting strategy
- Cone beam narrow for  $128^3$  voxels with 128 projections of size  $128\times128$

### **Results (Communication time)**



- Distributed-memory methods for tomographic reconstruction come with a challenging partitioning problem.
- We present GRCB: an efficient and effective partitioning method that leads to low communication volumes and good load balance.