
Modern BSP: Scientific Computing, HPC, and

’Big Data’

Jan-Willem Buurlage, CWI, Amsterdam

Prepared for MasterMath course Parallel Algorithms, 05-10-2016

1

Outline

Modern parallel computing

End of Moore’s law

Bulk

BSP on Exotic Systems

Parallella

Epiphany BSP

Streams

Examples

2

Modern parallel computing

Moore’s law and the need for parallel

4

Moore’s law in recent years

• (1999) ’Physical limits reached for processor chips’ 1

• (2003) ’Intel scientists say the end of Moore’s law is near’ 2

• (2006) ’Gordon Moore: Moore’s law is no more’ 3

• (2016) ’Industry struggling to keep up with Moore’s law’ 4

1https://tweakers.net/nieuws/5951/

ontwikkelingen-chip-industrie-bereiken-fysieke-limieten.

html
2https://tweakers.net/nieuws/29942/

intel-wetenschappers-schetsen-het-einde-van-moores-law.

html
3https://tweakers.net/nieuws/45230/

gordon-moore-de-wet-van-moore-is-niet-meer.html
4https://tweakers.net/reviews/4787/

is-de-wet-van-moore-dood.html

5

https://tweakers.net/nieuws/5951/ontwikkelingen-chip-industrie-bereiken-fysieke-limieten.html
https://tweakers.net/nieuws/5951/ontwikkelingen-chip-industrie-bereiken-fysieke-limieten.html
https://tweakers.net/nieuws/5951/ontwikkelingen-chip-industrie-bereiken-fysieke-limieten.html
https://tweakers.net/nieuws/29942/intel-wetenschappers-schetsen-het-einde-van-moores-law.html
https://tweakers.net/nieuws/29942/intel-wetenschappers-schetsen-het-einde-van-moores-law.html
https://tweakers.net/nieuws/29942/intel-wetenschappers-schetsen-het-einde-van-moores-law.html
https://tweakers.net/nieuws/45230/gordon-moore-de-wet-van-moore-is-niet-meer.html
https://tweakers.net/nieuws/45230/gordon-moore-de-wet-van-moore-is-niet-meer.html
https://tweakers.net/reviews/4787/is-de-wet-van-moore-dood.html
https://tweakers.net/reviews/4787/is-de-wet-van-moore-dood.html

Moore’s law in recent years (cont.)5

5Samuel H. Fuller; Lynette I. Millett: Computing Performance: Game Over or

Next Level?, 2011

6

Formal models of parallel computing

• Parallel random access machine (PRAM)6 allows to model

parallel performance.

• The BSP model7 builds on these ideas, puts restrictions on

parallel algorithms, fundamental model for modern

high-performance algorithms.

• Others:

• Actor model (standard model in many modern programming

languages)

• LogP (similar to BSP)

• Dataflow (big data, tensorflow)

• Functional, skeleton models.

6Wyllie, James C. The Complexity of Parallel Computations, 1979
7Leslie G. Valiant. A bridging model for parallel computation, 1990

7

BSP today

• BSP is still the leading model for distributed computing. BSP

is used throughout industry. The Big Data methodologies

introduced by Google (MapReduce, Pregel) and used by all

major tech companies (such as Facebook) are built on

(restricted) BSP algorithms.

• However, BSPlib is not that popular (anymore). BSP

programming usually happens through MPI or the various

Apache projects (Hama, Giraph, Hadoop). But it provides an

accessible way to familiarize yourself with parallel

programming.

8

Google’s MapReduce8

• Array of key-value pairs D1 = [{k1, v1}, . . .].
• The map M emits a number of mapped key-value pairs:

M(ki , vi) = [{k̃1, ṽ1}, {k̃2, ṽ2}, . . .].

• The mapped key-value pairs form a new data set:⋃
i M(ki , vi). Each pair in this set with the same key is

gathered together, so that we obtain:

D2 = [{k̃1, [v11, v12, . . .]}, {k̃2, [v21, v22, . . .]}, . . .].

• The reduce R works on pairs in D̃ and usually emits a single

value per pair leading to a final dataset D3.
8MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean and

Sanjay Ghemawat (2004)

9

Google’s MapReduce (Example)

• Classic example: word count. The map takes (file, content)

pair, and emits (word, 1) pairs for each word in the content.

The reduce function sums over all mapped pairs with the

same word.

• The Map and Reduce are performed in parallel, and are both

followed by communication and a bulk-synchronization, which

means MapReduce ⊂ BSP!

10

Google’s Pregel

BSP for graph processing, used by Google9 and Facebook10:

“The high-level organization of Pregel programs is

inspired by Valiant’s Bulk Synchronous Parallel model.

Pregel computations consist of a sequence of iterations,

called supersteps. During a superstep the framework

invokes a user-defined function for each vertex,

conceptually in parallel. The function specifies behavior

at a single vertex V and a single superstep S. It can read

messages sent to V in superstep S − 1, send messages to

other vertices that will be received at superstep S + 1,

and modify the state of V and its outgoing edges.”
9Pregel: A System for Large-Scale Graph Processing – Malewicz et al. (2010)

10One Trillion Edges: Graph Processing at Facebook-Scale - Avery Ching et al

(2015).
11

Other parallel models

• Asynchronous, thread-based computing (primary way of

programming for shared memory systems).

• ’Stream processing’, used for GPGPU programming (BSP on

coarse level).

• Functional programming, restrictive but often trivial to

parallelize.

12

Libraries for parallel computing

• MPI

• CUDA

• OpenCL

• OpenMP

• Apache Hadoop, Apache Giraph, Apache Hama, . . .

• Functional languages (Erlang, Haskell, . . .)

• . . .

• BSPlib

New library for modern parallel scientific computing: Bulk.

13

Bulk

5th most cited xkcd11

11https://xkcdref.info/statistics/

15

Introduction

• Not trying to replace directly any of the current systems

• These other libraries should simply not be used where they are

used right now! Need a modern interface, user should not

have to worry about the transport layer.

• In a way, BSPlib already improves upon MPI in this regard.

16

Goals

• Unified and modern interface for distributed and parallel

computing.

• Works accross a wide variety of platforms, flexible backends.

• We support initially already:

• multi-core desktop computers (on top of C++ threading

support)

• a many-core coprocessor (custom backend)

• and distributed clusters (using MPI).

17

Why is it needed

• A single syntax for parallel application across platforms. There

is no general library or interface for writing BSP programs for

modern heterogeneous systems.

• Maintainable and generic code because of modern C++

constructs and idioms.

• Easy to write performant code, freedom to optimize.

18

What does it look like (cont.)

Communication using variables:

Bulk:
auto x = bu lk : : c r e a t e v a r<i n t >(wor ld) ;

bu l k : : put (wor ld . n e x t p r o c e s s o r () , 1 , x) ;
auto y = bu lk : : ge t (wor ld . n e x t p r o c e s s o r () , x) ;

wor ld . sync () ;
auto v a l u e = y . v a l u e () ;
wor ld . sync () ;

BSPlib:
i n t a = 0 ;
b s p pu sh r e g (&a , s i z e o f (i n t)) ;
b sp s ync () ;

i n t b = s ;
b sp put ((s + 1) % p , &b , &a , 0 , s i z e o f (i n t)) ;
b sp s ync () ;

a = s ;
i n t b = 0 ;
b sp g e t ((s + 1) % p , &a , 0 , &b , s i z e o f (i n t)) ;
b sp s ync () ;

There is also a short-hand syntax in Bulk:

x (p r o c e s s o r) = va l u e ;

auto y = x (p r o c e s s o r) . ge t () ;

19

What does it look like (cont.)

Co-arrays:

auto xs = bu lk : : c r e a t e c o a r r a y<i n t >(wor ld , 5) ;

x s (3) [2] = 1 ;

wor ld . sync () ;

// g e n e r i c (l o c a l) c o n t a i n e r

i n t r e s u l t = 0 ;

f o r (auto x : xs)

r e s u l t += x ;

20

What does it look like (cont.)

Message queues :

bu lk : : c r e a t e queue<i n t , i n t >(wor ld) ;

q (wor ld . n e x t p r o c e s s o r ()) . send (1 , 1) ;

q (wor ld . n e x t p r o c e s s o r ()) . send (2 , 3) ;

q (wor ld . n e x t p r o c e s s o r ()) . send (123 , 1337) ;

auto q2 = bu lk : : c r e a t e queue<i n t , f l o a t >(wor ld) ;

q2 (wor ld . n e x t p r o c e s s o r ()) . send (5 , 2 . 1 f) ;

q2 (wor ld . n e x t p r o c e s s o r ()) . send (3 , 4 . 0 f) ;

wor ld . sync () ;

// read queue

f o r (auto& msg : q) {
s t d : : cout << ” the f i r s t queue r e c e i v e d a message : ” << msg . tag << ” , ”

<< msg . con t en t << ”\n” ;

}

f o r (auto& msg : q2) {
s t d : : cout << ” the second queue r e c e i v e d a message : ” << msg . tag << ” , ”

<< msg . con t en t << ”\n” ;

}

21

Summary of Bulk

• Modern interface for writing parallel programs

• Safer and clearer code

• Works together with other libraries because of generic

containers and higher-level functions (you can std::sort

an incoming message queue).

• Works across more platforms than any competing library

(because of the backend mechanism).

• Joint work with Tom Bannink (CWI). Open-source, MIT

licensed. Tentative documentation at

http://www.codu.in/bulk/docs.

22

BSP on Exotic Systems

Parallella

• ‘A supercomputer for everyone, with the lofty goal of

“democratizing access to parallel computing’

• Crowd-funded development board, raised almost $1M in 2012.

24

Epiphany co-processor

• N × N grid of RISC processors, clocked by default at 600

MHz (current generations have 16 or 64 cores).

• Efficient communication network with ‘zero-cost start up’

communication. Asynchronous connection to external memory

pool using DMA engines (used for software caching).

• Energy efficient @ 50 GFLOPs/W (single precision), in 2011,

top GPUs about 5× less efficient.

25

Epiphany memory

• Each Epiphany core has 32 kB of local memory, on 16-core

model 512 kB available in total.

• On each core, the kernel binary and stack already take up a

large section of this memory. Duplication.

• On the Parallella, there is 32 MB of external RAM shared

between the cores, and 1 GB of additional RAM accessible

from the ARM host processor.

26

Many-core co-processors

• Applications: Mobile, Education, possibly even HPC.

• Specialized (co)processors for AI, Computer Vision gaining

popularity.

• KiloCore (UC Davis, 2016). 1000 processors on a single chip.

• Bulk provides the same interface for programming the

Epiphany co-processor as for programming distributed

computer clusters! BSP algorithms can be used for this

platform when modified slightly for streamed data12.

12JB, Tom Bannink, Abe Wits. Bulk-synchronous pseudo-streaming algorithms

for many-core accelerators. arXiv:1608.07200 [cs.DC], 2016

27

Epiphany BSP

• Parallella: powerful platform, especially for students and

hobbyists. Suffers from poor tooling.

• Epiphany BSP, implementation of the BSPlib standard for the

Parallella.

• Custom implementations for many rudimentary operations:

memory management, printing, barriers.

29

Hello World: ESDK (124 LOC)

// hos t

const uns igned ShmSize = 128 ;

const char ShmName [] = ” he l l o s hm ” ;

const uns igned SeqLen = 20 ;

i n t main (i n t argc , char ∗a rgv [])

{
uns igned row , co l , c o r e i d , i ;

e p l a t f o rm t p l a t f o rm ;

e e p i p h a n y t dev ;

e mem t mbuf ;

i n t r c ;

s r and (1) ;

e s e t l o a d e r v e r b o s i t y (H D0) ;

e s e t h o s t v e r b o s i t y (H D0) ;

e i n i t (NULL) ;

e r e s e t s y s t em () ;

e g e t p l a t f o rm i n f o (&p l a t f o rm) ;

r c = e s hm a l l o c (&mbuf , ShmName ,

ShmSize) ;

i f (r c != E OK)

r c = e shm at tach (&mbuf , ShmName

) ;

// . . .

// k e r n e l

i n t main (v o i d) {
const char ShmName [] = ” he l l o s hm ”

;

const char Msg [] = ” He l l o

World from co r e 0x%03x ! ” ;

char buf [2 5 6] = { 0 } ;
e c o r e i d t c o r e i d ;

e memseg t emem ;

uns igned my row ;

uns igned my co l ;

// Who am I ? Query the CoreID from

hardware .

c o r e i d = e g e t c o r e i d () ;

e c o o r d s f r om c o r e i d (c o r e i d , &my row

, &my co l) ;

i f (E OK != e shm at tach (&emem,

ShmName)) {
r e t u r n EXIT FAILURE ;

}

s n p r i n t f (buf , s i z e o f (buf) , Msg ,

c o r e i d) ;

// . . . 30

Hello World: Epiphany BSP (18 LOC)

// hos t

#i n c l u d e <ho s t b sp . h>

#i n c l u d e <s t d i o . h>

i n t main (i n t argc , char∗∗ a rgv) {
b s p i n i t (” e h e l l o . e l f ” , argc , a rgv) ;

b s p b eg i n (b sp np ro c s ()) ;

ebsp spmd () ;

bsp end () ;

r e t u r n 0 ;

}

// k e r n e l

#i n c l u d e <e b sp . h>

i n t main () {
b sp beg i n () ;

i n t n = bsp np ro c s () ;

i n t p = bsp p i d () ;

e b s p p r i n t f (” He l l o wor ld from co r e %

d/%d” , p , n) ;

bsp end () ;

r e t u r n 0 ;

}

31

BSP on low-memory

• Limited local memory, classic BSP programs can not run.

• Primary goal should be to minimize communication with

external memory.

• Many known performance models can be applied to this

system (EM-BSP, MBSP, Multi-BSP), no portable way to

write/develop algorithms.

32

BSP accelerator

• We view the Epiphany processor as a BSP computer with

limited local memory of capacity L.

• We have a shared external memory unit of capacity E , from

which we can read data asynchronously with inverse

bandwidth e.

• Parameter pack: (p, r , g , l , e, L,E).

33

Parallella as a BSP accelerator

• p = 16, p = 64

• r = (600× 106)/5 = 120× 106 FLOPs(∗)

• l = 1.00 FLOP

• g = 5.59 FLOP/word

• e = 43.4 FLOP/word

• L = 32 kB

• E = 32 MB

(*): In practice one FLOP every 5 clockcycles, in theory up to 2 FLOPs per

clockcycle.

34

External data access: streams

• Idea: present the input of the algorithm as streams for each

core. Each stream consists of a number of tokens.

• The ith stream for the sth processor:

Σs
i = (σ1, σ2, . . . , σn)

• Tokens fit in local memory: |σi | < L.

• We call the BSP programs that run on the tokens loaded on

the cores hypersteps.

36

Structure of a program

• In a hyperstep, while the computation is underway, the next

tokens are loaded in (asynchronously).

• The time a hyperstep takes is either bound by bandwidth or

computation.

• Our cost function:

T̃ =
H−1∑
h=0

max

(
Th, e

∑
i

Ci

)
.

Here, Ci is the token size of the ith stream, and Th is the

(BSP) cost of the hth hyperstep.

37

Pseudo-streaming

• In video-streaming by default the video just ‘runs’. But viewer

can skip ahead, rewatch portions. In this context referred to

as pseudo-streaming.

• Here, by default the next logical token is loaded in. But

programmer can seek within the stream.

• This minimizes the amount of code necessary for

communication with external memory.

• We call the resulting programs bulk-synchronous

pseudo-streaming algorithms.

38

BSPlib extension for streaming

// host

void* bsp_stream_create(

int processor_id,

int stream_size,

int token_size,

const void* initial_data);

// kernel

int bsp_stream_open(int stream_id);

int bsp_stream_close(int stream_id);

39

BSPlib extension for streaming (2)

int bsp_stream_move_down(

int stream_id,

void** buffer,

int preload);

int bsp_stream_move_up(

int stream_id,

const void* data,

int data_size,

int wait_for_completion);

void bsp_stream_seek(

int stream_id,

int delta_tokens);

40

Example 1: Inner product

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

~v

~v (0) ~v (1) ~v (2)

Σ0
~v

(σ0~v)1 (σ0~v)2

42

Example 1: Inner product (cont.)

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

1. Make a p-way distribution of ~v , ~w (e.g. in blocks), resulting in

subvectors ~v (s) and ~u(s).

2. These subvectors are then split into tokens that each fit in L.

We have two streams for each core s:

Σs
~v = ((σs~v)1, (σ

s
~v)2, . . . , (σ

s
~v)H),

Σs
~u = ((σs~u)1, (σ

s
~u)2, . . . , (σ

s
~u)H).

3. Maintain a partial answer αs throughout the algorithm, add

(σs~v)h · (σs~u)h in the hth hyperstep. After the final tokens, sum

over all αs .

43

Example 2: Matrix multiplication

• Input: Matrices A,B of size n × n

• Output: C = AB

We decompose the (large) matrix multiplication into smaller

problems that can be performed on the accelerator (with N × N

cores). This is done by decomposing the input matrices into

M ×M outer blocks, where M is chosen suitably large.

AB =


A11 A12 . . . A1M

A21 A22 . . . A2M

...
...

. . .
...

AM1 AM2 . . . AMM




B11 B12 . . . B1M

B21 B22 . . . B2M

...
...

. . .
...

BM1 BM2 . . . BMM



44

Example 2: Matrix multiplication (cont.)

We compute the outer blocks of C in row-major order. Since:

Cij =
M∑
k=1

AikBkj ,

a complete outer block is computed every M hypersteps, where in

a hyperstep we perform the multiplication of two outer blocks of A

and B.

Each block is again decomposed into inner blocks that fit into a
core:

Aij =


(Aij)11 (Aij)12 . . . (Aij)1N

(Aij)21 (Aij)22 . . . (Aij)2N
...

...
. . .

...

(Aij)N1 (Aij)N2 . . . (Aij)NN

 .

45

Example 2: Matrix multiplication (cont.)

The streams for core (s, t) are the inner blocks of A that belong to

the core, laid out in row-major order, and the inner blocks of B in

column-major order.

ΣA
st =(A11)st(A12)st . . . (A1M)st︸ ︷︷ ︸

� M times

(A21)st(A22)st . . . (A2M)st︸ ︷︷ ︸
� M times

. . . (AM1)st(AM2)st . . . (AMM)st︸ ︷︷ ︸
� M times

,

ΣB
st =(B11)st(B21)st . . . (BM1)st(B12)st(B22)st

. . . (BM2)st(B13)st . . . (B1M)st(B2M)st . . . (BMM)st︸ ︷︷ ︸
� M times

.

46

Example 2: Matrix multiplication (cont.)

In a hyperstep a suitable BSP algorithm (e.g. Cannon’s algorithm)

is used for the matrix multiplication on the accelerator.

We show that the cost function can be written as:

T̃cannon = max

(
2
n3

N2
+

2Mn2

N
g + NM3l , 2

Mn2

N2
e

)
.

47

Thanks

If you want to do your final project on something related to

Epiphany BSP and/or Bulk, let me know!

48

	Modern parallel computing
	End of Moore's law
	Bulk

	BSP on Exotic Systems
	Parallella
	Epiphany BSP
	Streams
	Examples

