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Parallella

• ‘A supercomputer for everyone, with the lofty goal of

democratizing access to parallel computing’

• Crowd-funded development board, raised almost $1M in 2012.
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Epiphany co-processor

• N × N grid of RISC processors, clocked by default at 600

MHz (current generations have 16 or 64 cores), each with

limited local memory.

• Efficient communication network with ‘zero-cost start up’

communication. Asynchronous connection to external memory

pool using DMA engines (used for software caching).

• Energy efficient @ 50 GFLOPs/W (single precision), in 2011,

top GPUs about 5× less efficient.
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Epiphany memory

• Each Epiphany core has 32 kB of local memory, on 16-core

model 512 kB available in total. There are no caches.

• On each core, the kernel binary and stack already take up a

large section of this memory.

• On the Parallella, there is 32 MB of external RAM shared

between the cores, and 1 GB of additional RAM accessible

from the ARM host processor.
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Many-core co-processors

• Applications: Mobile, Education, possibly even HPC.

• There are also specialized (co)processors on the market for

e.g. machine learning, computer vision.

• KiloCore (UC Davis, 2016). 1000 processors on a single chip.
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Epiphany BSP

• Parallella: powerful platform, especially for students and

hobbyists. Suffers from poor tooling.

• Epiphany BSP, implementation of the BSPlib standard for the

Parallella.

• Custom implementations for many rudimentary operations:

memory management, printing, barriers.
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Hello World: ESDK (124 LOC)

// hos t

const uns igned ShmSize = 128 ;

const char ShmName [ ] = ” he l l o s hm ” ;

const uns igned SeqLen = 20 ;

i n t main ( i n t argc , char ∗a rgv [ ] )

{
uns igned row , co l , c o r e i d , i ;

e p l a t f o rm t p l a t f o rm ;

e e p i p h a n y t dev ;

e mem t mbuf ;

i n t r c ;

s r and (1 ) ;

e s e t l o a d e r v e r b o s i t y (H D0) ;

e s e t h o s t v e r b o s i t y (H D0) ;

e i n i t (NULL) ;

e r e s e t s y s t em ( ) ;

e g e t p l a t f o rm i n f o (&p l a t f o rm ) ;

r c = e s hm a l l o c (&mbuf , ShmName ,

ShmSize ) ;

i f ( r c != E OK)

r c = e shm at tach (&mbuf , ShmName

) ;

// . . .

// k e r n e l

i n t main ( vo id ) {
const char ShmName [ ] = ”

he l l o s hm ” ;

const char Msg [ ] = ” He l l o

World from co r e 0x%03x ! ” ;

char buf [ 2 5 6 ] = { 0 } ;
e c o r e i d t c o r e i d ;

e memseg t emem ;

uns igned my row ;

uns igned my co l ;

// Who am I ? Query the CoreID from

hardware .

c o r e i d = e g e t c o r e i d ( ) ;

e c o o r d s f r om c o r e i d ( c o r e i d , &my row

, &my co l ) ;

i f ( E OK != e shm at tach (&emem,

ShmName) ) {
r e t u r n EXIT FAILURE ;

}

s n p r i n t f ( buf , s i z e o f ( buf ) , Msg ,

c o r e i d ) ;

// . . . 8



Hello World: Epiphany BSP (18 LOC)

// hos t

#inc l u d e <ho s t b sp . h>

#inc l u d e <s t d i o . h>

i n t main ( i n t argc , char∗∗ a rgv ) {
b s p i n i t ( ” e h e l l o . e l f ” , argc , a rgv ) ;

b s p b eg i n ( b sp np ro c s ( ) ) ;

ebsp spmd ( ) ;

bsp end ( ) ;

r e t u r n 0 ;

}

// k e r n e l

#inc l u d e <e b sp . h>

i n t main ( ) {
b sp beg i n ( ) ;

i n t n = bsp np ro c s ( ) ;

i n t p = bsp p i d ( ) ;

e b s p p r i n t f ( ” He l l o wor ld from co r e %

d/%d” , p , n ) ;

bsp end ( ) ;

r e t u r n 0 ;

}
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BSP computers

• The BSP model [Valiant, 1990] describes a general way to

perform parallel computations.

• An abstract BSP computer is associated to the model that

has p processors, which all have access to a communication

network.

1 2 3 4 . . . p
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BSP computers (cont.)

• BSP programs consist of a number of supersteps, that each

have a computation phase, and a communication phase. Each

superstep is followed by a barrier synchronisation.

• Each processor on a BSP computer has a processing rate r . It

has two parameters: g , related to the communication speed,

and l the latency.

• The running time of a BSP program can be expressed in

terms of these parameters! We denote this by T (g , l).
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BSP on low-memory

• Limited local memory, classic BSP programs can not run.

• Primary goal should be to minimize communication with

external memory.

• Many known performance models can be applied to this

system (EM-BSP, MBSP, Multi-BSP), no portable way to

write/develop algorithms.
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BSP accelerator

• We view the Epiphany processor as a BSP computer with

limited local memory of capacity L.

• We have a shared external memory unit of capacity E , from

which we can read data asynchronously with inverse

bandwidth e.

• Parameter pack: (p, r , g , l , e, L,E ).
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Parallella as a BSP accelerator

• p = 16, p = 64

• r = (600× 106)/5 = 120× 106 FLOPS(∗)

• l = 1.00 FLOP

• g = 5.59 FLOP/word

• e = 43.4 FLOP/word

• L = 32 kB

• E = 32 MB

(*): In practice one FLOP every 5 clockcycles, in theory up to 2 FLOPs per

clockcycle.
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Extending BSP with streams



External data access: streams

• Idea: present the input of the algorithm as streams for each

core. Each stream consists of a number of tokens.

• The ith stream for the sth processor:

Σs
i = (σ1, σ2, . . . , σn)

• Tokens fit in local memory: |σi | < L.

• We call the BSP programs that run on the tokens loaded on

the cores hypersteps.
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Structure of a program

• In a hyperstep, while the computation is underway, the next

tokens are loaded in (asynchronously).

• The time a hyperstep takes is either bound by bandwidth or

computation.

• Cost function:

T̃ =
H−1∑
h=0

max

(
Th, e

∑
i

Ci

)
.

Here, Ci is the token size of the ith stream, and Th is the

(BSP) cost of the hth hyperstep.
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Pseudo-streaming

• In video-streaming by default the video just ‘runs’. But viewer

can skip ahead, rewatch portions. In this context referred to

as pseudo-streaming.

• Here, by default the next logical token is loaded in. But

programmer can seek within the stream.

• This minimizes the amount of code necessary for

communication with external memory.

• We call the resulting programs bulk-synchronous

pseudo-streaming algorithms.
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BSPlib extension for streaming

// host

void* bsp_stream_create(

int processor_id,

int stream_size,

int token_size,

const void* initial_data);

// kernel

int bsp_stream_open(int stream_id);

void bsp_stream_close(int stream_id);

18



BSPlib extension for streaming (2)

int bsp_stream_move_down(

int stream_id,

void** buffer,

int preload);

int bsp_stream_move_up(

int stream_id,

const void* data,

int data_size,

int wait_for_completion);

void bsp_stream_seek(

int stream_id,

int delta_tokens);

19
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Example 1: Inner product

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

~v

~v (0) ~v (1) ~v (2)

Σ0
~v

(σ0~v )1 (σ0~v )2

20



Example 1: Inner product (cont.)

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

1. Make a p-way distribution of ~v , ~u (e.g. in blocks), resulting in

subvectors ~v (s) and ~u(s).

2. These subvectors are then split into tokens that each fit in L.

We have two streams for each core s:

Σs
~v = ((σs~v )1, (σ

s
~v )2, . . . , (σ

s
~v )H),

Σs
~u = ((σs~u)1, (σ

s
~u)2, . . . , (σ

s
~u)H).

3. Maintain a partial answer αs throughout the algorithm, add

(σs~v )h · (σs~u)h in the hth hyperstep. After the final tokens, sum

over all αs .
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Example 2: Matrix multiplication

• Input: Matrices A,B of size n × n

• Output: C = AB

We decompose the (large) matrix multiplication into smaller

problems that can be performed on the accelerator (with N × N

cores). This is done by decomposing the input matrices into

M ×M outer blocks, where M is chosen suitably large.

AB =


A11 A12 . . . A1M

A21 A22 . . . A2M

...
...

. . .
...

AM1 AM2 . . . AMM




B11 B12 . . . B1M

B21 B22 . . . B2M

...
...

. . .
...

BM1 BM2 . . . BMM



22



Example 2: Matrix multiplication (cont.)

We compute the outer blocks of C in row-major order. Since:

Cij =
M∑
k=1

AikBkj ,

a complete outer block is computed every M hypersteps, where in

a hyperstep we perform the multiplication of one outer blocks of

A, and one of B.

Each block is again decomposed into inner blocks that fit into a
core:

Aij =


(Aij)11 (Aij)12 . . . (Aij)1N

(Aij)21 (Aij)22 . . . (Aij)2N
...

...
. . .

...

(Aij)N1 (Aij)N2 . . . (Aij)NN

 .
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Example 2: Matrix multiplication (cont.)

The streams for core (s, t) are the inner blocks of A that belong to

the core, laid out in row-major order, and the inner blocks of B in

column-major order.

ΣA
st =(A11)st(A12)st . . . (A1M)st︸ ︷︷ ︸

� M times

(A21)st(A22)st . . . (A2M)st︸ ︷︷ ︸
� M times

. . . (AM1)st(AM2)st . . . (AMM)st︸ ︷︷ ︸
� M times

,

ΣB
st =(B11)st(B21)st . . . (BM1)st(B12)st(B22)st

. . . (BM2)st(B13)st . . . (B1M)st(B2M)st . . . (BMM)st︸ ︷︷ ︸
� M times

.
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Example 2: Matrix multiplication (cont.)
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Example 2: Matrix multiplication (cont.)

In a hyperstep a suitable BSP algorithm (e.g. Cannon’s algorithm)

is used for the matrix multiplication on the accelerator.

We show that the cost function can be written as:

T̃cannon = max

(
2
n3

N2
+

2Mn2

N
g + NM3l , 2

Mn2

N2
e

)
.
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Example 3: Sorting

• Input: An array A of comparable objects.

• Output: The sorted array Ã.

1. Parallel bucket sort: create p buckets, put each element of A

in the appropriate bucket, let the sth core sort the sth bucket.

2. Sample sort samples elements of A in order to balance the

buckets.

26
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Sorting: Splitters

1. Split the input array to create p equally sized streams. Also

create p initially empty streams that will be the buckets.

2. We adapt the sample sort algorithm, first we need to find the

buckets, which is Phase 1 of our algorithm.

3. Each core samples k elements randomly from its stream. We

do this using a classic streaming algorithm called reservoir

sampling. These samples are then sorted.

27
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Sorting: Splitters (cont.)

• Each core chooses p equally spaced elements and sends these

to the first core.

• The first core sorts its p2 values, and chooses p − 1 equally

spaced global splitters

• The global splitters are communicated to the other cores, and

define the bucket boundaries.
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Sorting: Splitters (cont.)
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Sorting: Bucketing

• In Phase 2 of the algorithm we fill the buckets with data.

• In a hyperstep, we run a BSP sort on the current tokens.

Next, each core will have consecutive elements that can be

sent to the correct buckets efficiently.

• These buckets are the p additional streams that were created,

which were initially empty.
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Sorting the individual buckets

• In Phase 3, the sth core sorts the sth bucket stream using an

external sort algorithm.

• We use a merge sort variant for this.

30



Sorting the individual buckets

• In Phase 3, the sth core sorts the sth bucket stream using an

external sort algorithm.

• We use a merge sort variant for this.

30



Summary

• Parallella and the Epiphany: great platform for BSP.

• Pseudo-streaming algorithms are a convenient way to think

about algorithms for this platform.

• Can often (re)use BSP algorithms, and generalize them to this

streaming framework, even if local memory is limited.
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Thank you for your attention. Questions?
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Sources

1. Parallella, Adapteva Epiphany:

http://www.adapteva.org

2. Epiphany BSP: http://www.codu.in/ebsp

3. KiloCore: https://www.ucdavis.edu/news/

worlds-first-1000-processor-chip
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