
Bulk-synchronous pseudo-streaming for

many-core accelerators

Jan-Willem Buurlage1 Tom Bannink1,2 Abe Wits3

1Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands

2QuSoft, Amsterdam, The Netherlands

3Utrecht University, The Netherlands

1

Overview

Parallella

Epiphany BSP

Extending BSP with streams

Examples

Inner product

Matrix multiplication

Sort

2

Parallella

Parallella

• ‘A supercomputer for everyone, with the lofty goal of

democratizing access to parallel computing’

• Crowd-funded development board, raised almost $1M in 2012.

3

Parallella

• ‘A supercomputer for everyone, with the lofty goal of

democratizing access to parallel computing’

• Crowd-funded development board, raised almost $1M in 2012.

3

Epiphany co-processor

• N × N grid of RISC processors, clocked by default at 600

MHz (current generations have 16 or 64 cores), each with

limited local memory.

• Efficient communication network with ‘zero-cost start up’

communication. Asynchronous connection to external memory

pool using DMA engines (used for software caching).

• Energy efficient @ 50 GFLOPs/W (single precision), in 2011,

top GPUs about 5× less efficient.

4

Epiphany co-processor

• N × N grid of RISC processors, clocked by default at 600

MHz (current generations have 16 or 64 cores), each with

limited local memory.

• Efficient communication network with ‘zero-cost start up’

communication. Asynchronous connection to external memory

pool using DMA engines (used for software caching).

• Energy efficient @ 50 GFLOPs/W (single precision), in 2011,

top GPUs about 5× less efficient.

4

Epiphany co-processor

• N × N grid of RISC processors, clocked by default at 600

MHz (current generations have 16 or 64 cores), each with

limited local memory.

• Efficient communication network with ‘zero-cost start up’

communication. Asynchronous connection to external memory

pool using DMA engines (used for software caching).

• Energy efficient @ 50 GFLOPs/W (single precision), in 2011,

top GPUs about 5× less efficient.

4

Epiphany memory

• Each Epiphany core has 32 kB of local memory, on 16-core

model 512 kB available in total. There are no caches.

• On each core, the kernel binary and stack already take up a

large section of this memory.

• On the Parallella, there is 32 MB of external RAM shared

between the cores, and 1 GB of additional RAM accessible

from the ARM host processor.

5

Epiphany memory

• Each Epiphany core has 32 kB of local memory, on 16-core

model 512 kB available in total. There are no caches.

• On each core, the kernel binary and stack already take up a

large section of this memory.

• On the Parallella, there is 32 MB of external RAM shared

between the cores, and 1 GB of additional RAM accessible

from the ARM host processor.

5

Epiphany memory

• Each Epiphany core has 32 kB of local memory, on 16-core

model 512 kB available in total. There are no caches.

• On each core, the kernel binary and stack already take up a

large section of this memory.

• On the Parallella, there is 32 MB of external RAM shared

between the cores, and 1 GB of additional RAM accessible

from the ARM host processor.

5

Many-core co-processors

• Applications: Mobile, Education, possibly even HPC.

• There are also specialized (co)processors on the market for

e.g. machine learning, computer vision.

• KiloCore (UC Davis, 2016). 1000 processors on a single chip.

6

Many-core co-processors

• Applications: Mobile, Education, possibly even HPC.

• There are also specialized (co)processors on the market for

e.g. machine learning, computer vision.

• KiloCore (UC Davis, 2016). 1000 processors on a single chip.

6

Many-core co-processors

• Applications: Mobile, Education, possibly even HPC.

• There are also specialized (co)processors on the market for

e.g. machine learning, computer vision.

• KiloCore (UC Davis, 2016). 1000 processors on a single chip.

6

Epiphany BSP

Epiphany BSP

• Parallella: powerful platform, especially for students and

hobbyists. Suffers from poor tooling.

• Epiphany BSP, implementation of the BSPlib standard for the

Parallella.

• Custom implementations for many rudimentary operations:

memory management, printing, barriers.

7

Epiphany BSP

• Parallella: powerful platform, especially for students and

hobbyists. Suffers from poor tooling.

• Epiphany BSP, implementation of the BSPlib standard for the

Parallella.

• Custom implementations for many rudimentary operations:

memory management, printing, barriers.

7

Epiphany BSP

• Parallella: powerful platform, especially for students and

hobbyists. Suffers from poor tooling.

• Epiphany BSP, implementation of the BSPlib standard for the

Parallella.

• Custom implementations for many rudimentary operations:

memory management, printing, barriers.

7

Hello World: ESDK (124 LOC)

// hos t

const uns igned ShmSize = 128 ;

const char ShmName [] = ” he l l o s hm ” ;

const uns igned SeqLen = 20 ;

i n t main (i n t argc , char ∗a rgv [])

{
uns igned row , co l , c o r e i d , i ;

e p l a t f o rm t p l a t f o rm ;

e e p i p h a n y t dev ;

e mem t mbuf ;

i n t r c ;

s r and (1) ;

e s e t l o a d e r v e r b o s i t y (H D0) ;

e s e t h o s t v e r b o s i t y (H D0) ;

e i n i t (NULL) ;

e r e s e t s y s t em () ;

e g e t p l a t f o rm i n f o (&p l a t f o rm) ;

r c = e s hm a l l o c (&mbuf , ShmName ,

ShmSize) ;

i f (r c != E OK)

r c = e shm at tach (&mbuf , ShmName

) ;

// . . .

// k e r n e l

i n t main (vo id) {
const char ShmName [] = ”

he l l o s hm ” ;

const char Msg [] = ” He l l o

World from co r e 0x%03x ! ” ;

char buf [2 5 6] = { 0 } ;
e c o r e i d t c o r e i d ;

e memseg t emem ;

uns igned my row ;

uns igned my co l ;

// Who am I ? Query the CoreID from

hardware .

c o r e i d = e g e t c o r e i d () ;

e c o o r d s f r om c o r e i d (c o r e i d , &my row

, &my co l) ;

i f (E OK != e shm at tach (&emem,

ShmName)) {
r e t u r n EXIT FAILURE ;

}

s n p r i n t f (buf , s i z e o f (buf) , Msg ,

c o r e i d) ;

// . . . 8

Hello World: Epiphany BSP (18 LOC)

// hos t

#inc l u d e <ho s t b sp . h>

#inc l u d e <s t d i o . h>

i n t main (i n t argc , char∗∗ a rgv) {
b s p i n i t (” e h e l l o . e l f ” , argc , a rgv) ;

b s p b eg i n (b sp np ro c s ()) ;

ebsp spmd () ;

bsp end () ;

r e t u r n 0 ;

}

// k e r n e l

#inc l u d e <e b sp . h>

i n t main () {
b sp beg i n () ;

i n t n = bsp np ro c s () ;

i n t p = bsp p i d () ;

e b s p p r i n t f (” He l l o wor ld from co r e %

d/%d” , p , n) ;

bsp end () ;

r e t u r n 0 ;

}

9

BSP computers

• The BSP model [Valiant, 1990] describes a general way to

perform parallel computations.

• An abstract BSP computer is associated to the model that

has p processors, which all have access to a communication

network.

1 2 3 4 . . . p

10

BSP computers

• The BSP model [Valiant, 1990] describes a general way to

perform parallel computations.

• An abstract BSP computer is associated to the model that

has p processors, which all have access to a communication

network.

1 2 3 4 . . . p

10

BSP computers (cont.)

• BSP programs consist of a number of supersteps, that each

have a computation phase, and a communication phase. Each

superstep is followed by a barrier synchronisation.

• Each processor on a BSP computer has a processing rate r . It

has two parameters: g , related to the communication speed,

and l the latency.

• The running time of a BSP program can be expressed in

terms of these parameters! We denote this by T (g , l).

11

BSP computers (cont.)

• BSP programs consist of a number of supersteps, that each

have a computation phase, and a communication phase. Each

superstep is followed by a barrier synchronisation.

• Each processor on a BSP computer has a processing rate r . It

has two parameters: g , related to the communication speed,

and l the latency.

• The running time of a BSP program can be expressed in

terms of these parameters! We denote this by T (g , l).

11

BSP computers (cont.)

• BSP programs consist of a number of supersteps, that each

have a computation phase, and a communication phase. Each

superstep is followed by a barrier synchronisation.

• Each processor on a BSP computer has a processing rate r . It

has two parameters: g , related to the communication speed,

and l the latency.

• The running time of a BSP program can be expressed in

terms of these parameters! We denote this by T (g , l).

11

BSP on low-memory

• Limited local memory, classic BSP programs can not run.

• Primary goal should be to minimize communication with

external memory.

• Many known performance models can be applied to this

system (EM-BSP, MBSP, Multi-BSP), no portable way to

write/develop algorithms.

12

BSP on low-memory

• Limited local memory, classic BSP programs can not run.

• Primary goal should be to minimize communication with

external memory.

• Many known performance models can be applied to this

system (EM-BSP, MBSP, Multi-BSP), no portable way to

write/develop algorithms.

12

BSP on low-memory

• Limited local memory, classic BSP programs can not run.

• Primary goal should be to minimize communication with

external memory.

• Many known performance models can be applied to this

system (EM-BSP, MBSP, Multi-BSP), no portable way to

write/develop algorithms.

12

BSP accelerator

• We view the Epiphany processor as a BSP computer with

limited local memory of capacity L.

• We have a shared external memory unit of capacity E , from

which we can read data asynchronously with inverse

bandwidth e.

• Parameter pack: (p, r , g , l , e, L,E).

13

BSP accelerator

• We view the Epiphany processor as a BSP computer with

limited local memory of capacity L.

• We have a shared external memory unit of capacity E , from

which we can read data asynchronously with inverse

bandwidth e.

• Parameter pack: (p, r , g , l , e, L,E).

13

BSP accelerator

• We view the Epiphany processor as a BSP computer with

limited local memory of capacity L.

• We have a shared external memory unit of capacity E , from

which we can read data asynchronously with inverse

bandwidth e.

• Parameter pack: (p, r , g , l , e, L,E).

13

Parallella as a BSP accelerator

• p = 16, p = 64

• r = (600× 106)/5 = 120× 106 FLOPS(∗)

• l = 1.00 FLOP

• g = 5.59 FLOP/word

• e = 43.4 FLOP/word

• L = 32 kB

• E = 32 MB

(*): In practice one FLOP every 5 clockcycles, in theory up to 2 FLOPs per

clockcycle.

14

Extending BSP with streams

External data access: streams

• Idea: present the input of the algorithm as streams for each

core. Each stream consists of a number of tokens.

• The ith stream for the sth processor:

Σs
i = (σ1, σ2, . . . , σn)

• Tokens fit in local memory: |σi | < L.

• We call the BSP programs that run on the tokens loaded on

the cores hypersteps.

15

External data access: streams

• Idea: present the input of the algorithm as streams for each

core. Each stream consists of a number of tokens.

• The ith stream for the sth processor:

Σs
i = (σ1, σ2, . . . , σn)

• Tokens fit in local memory: |σi | < L.

• We call the BSP programs that run on the tokens loaded on

the cores hypersteps.

15

External data access: streams

• Idea: present the input of the algorithm as streams for each

core. Each stream consists of a number of tokens.

• The ith stream for the sth processor:

Σs
i = (σ1, σ2, . . . , σn)

• Tokens fit in local memory: |σi | < L.

• We call the BSP programs that run on the tokens loaded on

the cores hypersteps.

15

External data access: streams

• Idea: present the input of the algorithm as streams for each

core. Each stream consists of a number of tokens.

• The ith stream for the sth processor:

Σs
i = (σ1, σ2, . . . , σn)

• Tokens fit in local memory: |σi | < L.

• We call the BSP programs that run on the tokens loaded on

the cores hypersteps.

15

Structure of a program

• In a hyperstep, while the computation is underway, the next

tokens are loaded in (asynchronously).

• The time a hyperstep takes is either bound by bandwidth or

computation.

• Cost function:

T̃ =
H−1∑
h=0

max

(
Th, e

∑
i

Ci

)
.

Here, Ci is the token size of the ith stream, and Th is the

(BSP) cost of the hth hyperstep.

16

Structure of a program

• In a hyperstep, while the computation is underway, the next

tokens are loaded in (asynchronously).

• The time a hyperstep takes is either bound by bandwidth or

computation.

• Cost function:

T̃ =
H−1∑
h=0

max

(
Th, e

∑
i

Ci

)
.

Here, Ci is the token size of the ith stream, and Th is the

(BSP) cost of the hth hyperstep.

16

Structure of a program

• In a hyperstep, while the computation is underway, the next

tokens are loaded in (asynchronously).

• The time a hyperstep takes is either bound by bandwidth or

computation.

• Cost function:

T̃ =
H−1∑
h=0

max

(
Th, e

∑
i

Ci

)
.

Here, Ci is the token size of the ith stream, and Th is the

(BSP) cost of the hth hyperstep.

16

Pseudo-streaming

• In video-streaming by default the video just ‘runs’. But viewer

can skip ahead, rewatch portions. In this context referred to

as pseudo-streaming.

• Here, by default the next logical token is loaded in. But

programmer can seek within the stream.

• This minimizes the amount of code necessary for

communication with external memory.

• We call the resulting programs bulk-synchronous

pseudo-streaming algorithms.

17

Pseudo-streaming

• In video-streaming by default the video just ‘runs’. But viewer

can skip ahead, rewatch portions. In this context referred to

as pseudo-streaming.

• Here, by default the next logical token is loaded in. But

programmer can seek within the stream.

• This minimizes the amount of code necessary for

communication with external memory.

• We call the resulting programs bulk-synchronous

pseudo-streaming algorithms.

17

Pseudo-streaming

• In video-streaming by default the video just ‘runs’. But viewer

can skip ahead, rewatch portions. In this context referred to

as pseudo-streaming.

• Here, by default the next logical token is loaded in. But

programmer can seek within the stream.

• This minimizes the amount of code necessary for

communication with external memory.

• We call the resulting programs bulk-synchronous

pseudo-streaming algorithms.

17

Pseudo-streaming

• In video-streaming by default the video just ‘runs’. But viewer

can skip ahead, rewatch portions. In this context referred to

as pseudo-streaming.

• Here, by default the next logical token is loaded in. But

programmer can seek within the stream.

• This minimizes the amount of code necessary for

communication with external memory.

• We call the resulting programs bulk-synchronous

pseudo-streaming algorithms.

17

BSPlib extension for streaming

// host

void* bsp_stream_create(

int processor_id,

int stream_size,

int token_size,

const void* initial_data);

// kernel

int bsp_stream_open(int stream_id);

void bsp_stream_close(int stream_id);

18

BSPlib extension for streaming (2)

int bsp_stream_move_down(

int stream_id,

void** buffer,

int preload);

int bsp_stream_move_up(

int stream_id,

const void* data,

int data_size,

int wait_for_completion);

void bsp_stream_seek(

int stream_id,

int delta_tokens);

19

Examples

Example 1: Inner product

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

~v

~v (0) ~v (1) ~v (2)

Σ0
~v

(σ0~v)1 (σ0~v)2

20

Example 1: Inner product (cont.)

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

1. Make a p-way distribution of ~v , ~u (e.g. in blocks), resulting in

subvectors ~v (s) and ~u(s).

2. These subvectors are then split into tokens that each fit in L.

We have two streams for each core s:

Σs
~v = ((σs~v)1, (σ

s
~v)2, . . . , (σ

s
~v)H),

Σs
~u = ((σs~u)1, (σ

s
~u)2, . . . , (σ

s
~u)H).

3. Maintain a partial answer αs throughout the algorithm, add

(σs~v)h · (σs~u)h in the hth hyperstep. After the final tokens, sum

over all αs .

21

Example 1: Inner product (cont.)

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

1. Make a p-way distribution of ~v , ~u (e.g. in blocks), resulting in

subvectors ~v (s) and ~u(s).

2. These subvectors are then split into tokens that each fit in L.

We have two streams for each core s:

Σs
~v = ((σs~v)1, (σ

s
~v)2, . . . , (σ

s
~v)H),

Σs
~u = ((σs~u)1, (σ

s
~u)2, . . . , (σ

s
~u)H).

3. Maintain a partial answer αs throughout the algorithm, add

(σs~v)h · (σs~u)h in the hth hyperstep. After the final tokens, sum

over all αs .

21

Example 1: Inner product (cont.)

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

1. Make a p-way distribution of ~v , ~u (e.g. in blocks), resulting in

subvectors ~v (s) and ~u(s).

2. These subvectors are then split into tokens that each fit in L.

We have two streams for each core s:

Σs
~v = ((σs~v)1, (σ

s
~v)2, . . . , (σ

s
~v)H),

Σs
~u = ((σs~u)1, (σ

s
~u)2, . . . , (σ

s
~u)H).

3. Maintain a partial answer αs throughout the algorithm, add

(σs~v)h · (σs~u)h in the hth hyperstep. After the final tokens, sum

over all αs .

21

Example 2: Matrix multiplication

• Input: Matrices A,B of size n × n

• Output: C = AB

We decompose the (large) matrix multiplication into smaller

problems that can be performed on the accelerator (with N × N

cores). This is done by decomposing the input matrices into

M ×M outer blocks, where M is chosen suitably large.

AB =


A11 A12 . . . A1M

A21 A22 . . . A2M

...
...

. . .
...

AM1 AM2 . . . AMM




B11 B12 . . . B1M

B21 B22 . . . B2M

...
...

. . .
...

BM1 BM2 . . . BMM



22

Example 2: Matrix multiplication (cont.)

We compute the outer blocks of C in row-major order. Since:

Cij =
M∑
k=1

AikBkj ,

a complete outer block is computed every M hypersteps, where in

a hyperstep we perform the multiplication of one outer blocks of

A, and one of B.

Each block is again decomposed into inner blocks that fit into a
core:

Aij =


(Aij)11 (Aij)12 . . . (Aij)1N

(Aij)21 (Aij)22 . . . (Aij)2N
...

...
. . .

...

(Aij)N1 (Aij)N2 . . . (Aij)NN

 .

23

Example 2: Matrix multiplication (cont.)

We compute the outer blocks of C in row-major order. Since:

Cij =
M∑
k=1

AikBkj ,

a complete outer block is computed every M hypersteps, where in

a hyperstep we perform the multiplication of one outer blocks of

A, and one of B.

Each block is again decomposed into inner blocks that fit into a
core:

Aij =


(Aij)11 (Aij)12 . . . (Aij)1N

(Aij)21 (Aij)22 . . . (Aij)2N
...

...
. . .

...

(Aij)N1 (Aij)N2 . . . (Aij)NN

 .

23

Example 2: Matrix multiplication (cont.)

We compute the outer blocks of C in row-major order. Since:

Cij =
M∑
k=1

AikBkj ,

a complete outer block is computed every M hypersteps, where in

a hyperstep we perform the multiplication of one outer blocks of

A, and one of B.

Each block is again decomposed into inner blocks that fit into a
core:

Aij =


(Aij)11 (Aij)12 . . . (Aij)1N

(Aij)21 (Aij)22 . . . (Aij)2N
...

...
. . .

...

(Aij)N1 (Aij)N2 . . . (Aij)NN

 .

23

Example 2: Matrix multiplication (cont.)

The streams for core (s, t) are the inner blocks of A that belong to

the core, laid out in row-major order, and the inner blocks of B in

column-major order.

ΣA
st =(A11)st(A12)st . . . (A1M)st︸ ︷︷ ︸

� M times

(A21)st(A22)st . . . (A2M)st︸ ︷︷ ︸
� M times

. . . (AM1)st(AM2)st . . . (AMM)st︸ ︷︷ ︸
� M times

,

ΣB
st =(B11)st(B21)st . . . (BM1)st(B12)st(B22)st

. . . (BM2)st(B13)st . . . (B1M)st(B2M)st . . . (BMM)st︸ ︷︷ ︸
� M times

.

24

Example 2: Matrix multiplication (cont.)

The streams for core (s, t) are the inner blocks of A that belong to

the core, laid out in row-major order, and the inner blocks of B in

column-major order.

ΣA
st =(A11)st(A12)st . . . (A1M)st︸ ︷︷ ︸

� M times

(A21)st(A22)st . . . (A2M)st︸ ︷︷ ︸
� M times

. . . (AM1)st(AM2)st . . . (AMM)st︸ ︷︷ ︸
� M times

,

ΣB
st =(B11)st(B21)st . . . (BM1)st(B12)st(B22)st

. . . (BM2)st(B13)st . . . (B1M)st(B2M)st . . . (BMM)st︸ ︷︷ ︸
� M times

.

24

Example 2: Matrix multiplication (cont.)

In a hyperstep a suitable BSP algorithm (e.g. Cannon’s algorithm)

is used for the matrix multiplication on the accelerator.

We show that the cost function can be written as:

T̃cannon = max

(
2
n3

N2
+

2Mn2

N
g + NM3l , 2

Mn2

N2
e

)
.

25

Example 2: Matrix multiplication (cont.)

In a hyperstep a suitable BSP algorithm (e.g. Cannon’s algorithm)

is used for the matrix multiplication on the accelerator.

We show that the cost function can be written as:

T̃cannon = max

(
2
n3

N2
+

2Mn2

N
g + NM3l , 2

Mn2

N2
e

)
.

25

Example 3: Sorting

• Input: An array A of comparable objects.

• Output: The sorted array Ã.

1. Parallel bucket sort: create p buckets, put each element of A

in the appropriate bucket, let the sth core sort the sth bucket.

2. Sample sort samples elements of A in order to balance the

buckets.

26

Example 3: Sorting

• Input: An array A of comparable objects.

• Output: The sorted array Ã.

1. Parallel bucket sort: create p buckets, put each element of A

in the appropriate bucket, let the sth core sort the sth bucket.

2. Sample sort samples elements of A in order to balance the

buckets.

26

Sorting: Splitters

1. Split the input array to create p equally sized streams. Also

create p initially empty streams that will be the buckets.

2. We adapt the sample sort algorithm, first we need to find the

buckets, which is Phase 1 of our algorithm.

3. Each core samples k elements randomly from its stream. We

do this using a classic streaming algorithm called reservoir

sampling. These samples are then sorted.

27

Sorting: Splitters

1. Split the input array to create p equally sized streams. Also

create p initially empty streams that will be the buckets.

2. We adapt the sample sort algorithm, first we need to find the

buckets, which is Phase 1 of our algorithm.

3. Each core samples k elements randomly from its stream. We

do this using a classic streaming algorithm called reservoir

sampling. These samples are then sorted.

27

Sorting: Splitters

1. Split the input array to create p equally sized streams. Also

create p initially empty streams that will be the buckets.

2. We adapt the sample sort algorithm, first we need to find the

buckets, which is Phase 1 of our algorithm.

3. Each core samples k elements randomly from its stream. We

do this using a classic streaming algorithm called reservoir

sampling. These samples are then sorted.

27

Sorting: Splitters (cont.)

• Each core chooses p equally spaced elements and sends these

to the first core.

• The first core sorts its p2 values, and chooses p − 1 equally

spaced global splitters

• The global splitters are communicated to the other cores, and

define the bucket boundaries.

28

Sorting: Splitters (cont.)

• Each core chooses p equally spaced elements and sends these

to the first core.

• The first core sorts its p2 values, and chooses p − 1 equally

spaced global splitters

• The global splitters are communicated to the other cores, and

define the bucket boundaries.

28

Sorting: Splitters (cont.)

• Each core chooses p equally spaced elements and sends these

to the first core.

• The first core sorts its p2 values, and chooses p − 1 equally

spaced global splitters

• The global splitters are communicated to the other cores, and

define the bucket boundaries.

28

Sorting: Bucketing

• In Phase 2 of the algorithm we fill the buckets with data.

• In a hyperstep, we run a BSP sort on the current tokens.

Next, each core will have consecutive elements that can be

sent to the correct buckets efficiently.

• These buckets are the p additional streams that were created,

which were initially empty.

29

Sorting: Bucketing

• In Phase 2 of the algorithm we fill the buckets with data.

• In a hyperstep, we run a BSP sort on the current tokens.

Next, each core will have consecutive elements that can be

sent to the correct buckets efficiently.

• These buckets are the p additional streams that were created,

which were initially empty.

29

Sorting: Bucketing

• In Phase 2 of the algorithm we fill the buckets with data.

• In a hyperstep, we run a BSP sort on the current tokens.

Next, each core will have consecutive elements that can be

sent to the correct buckets efficiently.

• These buckets are the p additional streams that were created,

which were initially empty.

29

Sorting the individual buckets

• In Phase 3, the sth core sorts the sth bucket stream using an

external sort algorithm.

• We use a merge sort variant for this.

30

Sorting the individual buckets

• In Phase 3, the sth core sorts the sth bucket stream using an

external sort algorithm.

• We use a merge sort variant for this.

30

Summary

• Parallella and the Epiphany: great platform for BSP.

• Pseudo-streaming algorithms are a convenient way to think

about algorithms for this platform.

• Can often (re)use BSP algorithms, and generalize them to this

streaming framework, even if local memory is limited.

31

Thank you for your attention. Questions?

32

Sources

1. Parallella, Adapteva Epiphany:

http://www.adapteva.org

2. Epiphany BSP: http://www.codu.in/ebsp

3. KiloCore: https://www.ucdavis.edu/news/

worlds-first-1000-processor-chip

33

http://www.adapteva.org
http://www.codu.in/ebsp
https://www.ucdavis.edu/news/worlds-first-1000-processor-chip
https://www.ucdavis.edu/news/worlds-first-1000-processor-chip

	Parallella
	Epiphany BSP
	Extending BSP with streams
	Examples
	Inner product
	Matrix multiplication
	Sort

