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Dense matrix-vector multiplication (GEMV)
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Sparse matrix-vector multiplication (SpMV)
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Parallel SpMV

• When performing an SpMV in parallel, we distribute the data
(A, x, y) over processing elements.

• The distribution of the nonzeros of A are leading; the
distribution of x and y follow.

• Two types of partitionings:
• assign entire rows (or columns) to a single processor (1D

partitioning).
• treat all nonzeros independently (2D partitioning).

4



Distribution example

A

x

y

5



Distribution example (blue processor)
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Parallel SpMV (Summary)

Ax = y, from the viewpoint of processor 1 ≤ s ≤ p:

1. Obtain the required non-local components of x (fan-out).
2. Compute the partial sums (ui)s (local SpMV).
3. Communicate each non-local partial sum (fan-in).
4. Compute the local components of y using the received partial

sums (reduction operation).
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Partitioning quality

• Question: what makes a distribution good?
• Roughly the same number of nonzeros to each processor:

|As | ≤ (1 + ε) |A|p

• Minimize communication volume V :

V =
n∑

j=1
(µj − 1)

︸ ︷︷ ︸
fan-out

+
m∑

i=1
(λi − 1)︸ ︷︷ ︸
fan-in

,

where λi denotes the number of processors that hold a portion
of the ith row, and similarly µj for the jth column.
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Communication volume

• karate: optimal is V = 8
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Hypergraph models

• We want to find a p-way partitioning of A while minimizing V .
• Look at hypergraph structures H associated to the sparsity

pattern of the matrix A.

Definition
A hypergraph H = (V,N ) is a set of vertices V , together with a set
of nets N with ni ∈ N a subset of V.

10



Hypergraph models (cont.)

• We model the matrix A as a set of vertices V , and want to find
a p-way partitioning of V.

• We consider three different models:

name vertices nets

row-net columns rows
column-net rows columns
fine-grain nonzeros rows and columns
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Hypergraph partitioning
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Hypergraph partitioning

• (λ− 1)-metric of a hypergraph partitioning:

V =
∑
n∈N

(λ(n)− 1),

where λ(n) counts the number of non-empty parts in the net n.
• The communication volume of a 1D row, 1D column or 2D

partititioning of A is equal to the (λ− 1)-metric of the
column-net, row-net or fine-grain model respectively.
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Label propagation on graphs

• Goal: Given a graph G = (V ,E ), obtain a p-way partitioning
that minimizes the edge-cut (i.e. the number of edges between
different parts).

• Use label propagation. Here we describe a version of the
PULP algorithm1:

• Assign to each v ∈ V a random label L(v) ∈ {1, . . . , p}.
• Consider each vertex v in turn, and update to the majority label

amongst its neighbours. Ties are broken randomly.

1Slota, Madduri, and Rajamanickam ’14
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Label propagation (1)
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Label propagation (2)
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Label propagation (3)
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Label propagation (4)
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Label propagation (5)
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Label propagation for graph partitioning

• Update the label of v ∈ V by counting the labels around it:

Cs(v) =
∑

(v ,u)∈E
1s(L(u)).

• Form clusters around vertices of high degree, in the hope that
vertices of low degree end up at the boundary of a part:

Cs(v) =
∑

(v ,u)∈E
1s(L(u))× deg(u).

• Prevent the algorithm from assigning a single label to all
vertices by also taking into account the current size of a part.
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Label propagation on hypergraphs

We generalize this method to hypergraphs2:

• Cs takes the following form, with w a weight function that has
to be chosen:

Cs(v) =
∑

n∈Nv

w(n, s).

• For the LV-metric, w should encode two key ideas:
• Do not introduce new labels to a net, and try to eliminate

uncommon labels.
• When net is almost pure differently labeled vertices should

strongly prefer taking over the majority label.

2Self-Improving Sparse Matrix Partitioning and Bulk-Synchronous
Pseudo-Streaming, MSc Thesis, JB
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Label propagation on hypergraphs

• Relative size of label s in net n: |{v ∈ n | L(v) = s}|/|n|.
• Scale the relative size T to lie in the range [−1, 1]. T (n, s)

equal to −1 or 1 means none or all vertices have label s
respectively.

• Take w as a function of T
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w(T )
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Initial partitioning

• Small nets are most easily kept pure, ignore larger nets at first.
• We construct a chain of growing hypergraphs:

A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ AM = H.

Here, Ai = {V,Ni}, and Ni can be taken to hold e.g. the 2i

smallest nets.
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Label propagation based hypergraph partitioning

• Begin with some initial partitioning, e.g. distribute the vertices
cyclically.

• For the first 1 ≤ i < M iterations, consider each vertex v ∈ V
in turn. Choose the label s that maximizes Cs(v) in the
hypergraph Ai , and assign to v this label.

• For i ≥ M we put Ai = H, and we perform this label
propagation on the entire hypergraph H.
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Iterative partitioning

Figure 1
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Iterative partitioning

Figure 2
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Iterative partitioning

Figure 3
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Iterative partitioning

Figure 4
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Iterative partitioning

Figure 5
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Tomography

V
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Tomographic reconstruction

• Projection matrix W , solve:

W x = b,

with x the image, and b the projection data.
• Rays, from the source to a detector pixel, define rows. Each

column of the matrix is a volume element, or voxel.
• Each intersection of a ray with a voxel, gives rise to a nonzero

in W . Note: W is sparse, with n voxels we have O(n1/3)
nonzeros in each row.

• For each projection image, we obtain a block of rows.
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Example

V A
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Large-scale tomography

• For tomographic reconstruction, the SpMV’s W x and W Ty are
the most expensive operations.

• 3D volumes with at least 10003 voxels. Already at this
resolution, W has O(1012) entries ⇒ TB’s!

• Can not be stored explicitely, instead generated from the
acquisition geometry.
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Large-scale tomography (cont.)

• We want to parallelize the forward projection and backward
projection operations

• How to distribute W ? Naive choices lead to prohibitively large
communication sizes

• Available sparse matrix partitioning methods do not apply,
since the hypergraph models are at least of size O(nnz(A)).
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Geometric partitioning

• We exploit the geometric structure of the problem to find a
partitioning3

• Generate a cuboid partitioning of the object volume,
corresponding to a 1D column partitioning

• The communication volume is equal to the total line cut, the
number of interfaces between parts crossed by a ray.

3Joint work with Rob Bisseling (UU) and Joost Batenburg (CWI)
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Example
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Recursive bisectioning

• Idea: Split the volume into two subvolumes recursively.

Theorem
Let V = V1 ∪ . . . ∪ Vn be a cuboid partitioning. Then for any
acquisition geometry G we have:

VG(V1,V2, . . . ,Vn) = VG(V1,V2, . . . ,Vn−1 ∪ Vn) + VG(Vn−1,Vn).

• Conclusion: recursively bisecting is OK
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Interface intersection
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Bisectioning algorithm

• Choose the splitting interface with the minimum number of
rays passing through it

• Evenly distribute the computational work
• Imagine sweeping a candidate interface along the volume, keep

track of the current number of rays passing through. Only
changes at coordinates where a line intersects the boundary!
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Plane sweep

V
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Acquisition geometries
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Results (SAPB)
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Results (DAPB)
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Results (CCBn)
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Results (CCBw)
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Results (HCB)
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Results (LAMn)
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Results (LAMw)
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Results (TSYN)
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Movie

<Partitioning movie>
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Results (Communication volume)

• Results for p = 256

Geometry V (slab) V (grb) Improvement

SAPB 0 0 0%
DAPB 1× 1010 8× 108 92%
CCBn 1× 109 3× 108 69%
CCBw 2× 109 4× 108 82%
HCB 2× 109 4× 108 71%
LAMn 3× 109 4× 108 89%
LAMw 5× 109 6× 108 90%
TSYN 2× 109 3× 108 87%
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Results (Communication time)
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Thank you

Questions?
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