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Dense matrix-vector multiplication (GEMV)




Sparse matrix-vector multiplication (SpMV)




Parallel SpMV

= When performing an SpMV in parallel, we distribute the data
(A, x,y) over processing elements.
= The distribution of the nonzeros of A are leading; the
distribution of x and y follow.
= Two types of partitionings:
= assign entire rows (or columns) to a single processor (1D
partitioning).
= treat all nonzeros independently (2D partitioning).



Distribution example
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Distribution example (blue processor)
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Parallel SpMV (Summary)

Ax =y, from the viewpoint of processor 1 < s < p:

Obtain the required non-local components of x (fan-out).
Compute the partial sums (u;)s (local SpMV).
Communicate each non-local partial sum (fan-in).
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Compute the local components of y using the received partial
sums (reduction operation).



Partitioning quality

= Question: what makes a distribution good?
= Roughly the same number of nonzeros to each processor:

A
p
= Minimize communication volume V:

V=S - 1)+ S (- 1),
j=1 i=1

—_— Y
fan-out fan-in

where \; denotes the number of processors that hold a portion
of the ith row, and similarly p; for the jth column.



Communication volume

= karate: optimal is V =8



Hypergraph models

= We want to find a p-way partitioning of A while minimizing V.
= Look at hypergraph structures H associated to the sparsity
pattern of the matrix A.

Definition
A hypergraph H = (V,N) is a set of vertices V, together with a set
of nets N with n; € N a subset of V.
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Hypergraph models (cont.)

= We model the matrix A as a set of vertices V, and want to find
a p-way partitioning of V.
= We consider three different models:

name vertices nets

row-net columns  rows

column-net rows columns
fine-grain nonzeros rows and columns
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Hypergraph partitioning
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Hypergraph partitioning

= (A — 1)-metric of a hypergraph partitioning:

V="> (A(n)-1),
neN
where A(n) counts the number of non-empty parts in the net n.
= The communication volume of a 1D row, 1D column or 2D
partititioning of A is equal to the (A — 1)-metric of the

column-net, row-net or fine-grain model respectively.
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Label propagation on graphs

= Goal: Given a graph G = (V/, E), obtain a p-way partitioning
that minimizes the edge-cut (i.e. the number of edges between
different parts).
= Use label propagation. Here we describe a version of the
PULP algorithm?:
= Assign to each v € V a random label L(v) € {1,...,p}.

= Consider each vertex v in turn, and update to the majority label
amongst its neighbours. Ties are broken randomly.

1Slota, Madduri, and Rajamanickam '14
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Label propagation (1)



Label propagation (2)



Label propagation (3)



Label propagation (4)



Label propagation (5)



Label propagation for graph partitioning

= Update the label of v € V by counting the labels around it:

> 1(L(w)

(v,u)eE

= Form clusters around vertices of high degree, in the hope that
vertices of low degree end up at the boundary of a part:

= Y 1(L(u)) x deg(u).

(v,u)eE

= Prevent the algorithm from assigning a single label to all
vertices by also taking into account the current size of a part.
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Label propagation on hypergraphs

We generalize this method to hypergraphs?:

s C; takes the following form, with w a weight function that has

to be chosen:

Gs(v) = Z w(n,s).

HENV
= For the LV-metric, w should encode two key ideas:

= Do not introduce new labels to a net, and try to eliminate

uncommon labels.
= When net is almost pure differently labeled vertices should

strongly prefer taking over the majority label.

2Self-Improving Sparse Matrix Partitioning and Bulk-Synchronous
Pseudo-Streaming, MSc Thesis, JB
21



Label propagation on hypergraphs

= Relative size of label s in net n: |{v € n| L(v) =s}|/|n|.

= Scale the relative size T to lie in the range [-1,1]. T(n,s)
equal to —1 or 1 means none or all vertices have label s
respectively.

= Take w as a function of T
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behaviour of w
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Initial partitioning

= Small nets are most easily kept pure, ignore larger nets at first.
= We construct a chain of growing hypergraphs:

AoC A C A C...CAy="H.

Here, A; = {V, N}, and N; can be taken to hold e.g. the 2/
smallest nets.
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Label propagation based hypergraph partitioning

= Begin with some initial partitioning, e.g. distribute the vertices
cyclically.

= For the first 1 < j < M iterations, consider each vertex v € V
in turn. Choose the label s that maximizes Cs(v) in the
hypergraph A;, and assign to v this label.

= For i > M we put A; = H, and we perform this label
propagation on the entire hypergraph H.
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Iterative partitioning
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Iterative partitioning
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Iterative partitioning
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Iterative partitioning
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Iterative partitioning
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Tomography
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Tomographic reconstruction

= Projection matrix W, solve:
Wx = b,

with x the image, and b the projection data.

= Rays, from the source to a detector pixel, define rows. Each
column of the matrix is a volume element, or voxel.

= Each intersection of a ray with a voxel, gives rise to a nonzero
in W. Note: W is sparse, with n voxels we have O(n'/3)
nonzeros in each row.

= For each projection image, we obtain a block of rows.
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Large-scale tomography

= For tomographic reconstruction, the SpMV's Wx and W Ty are
the most expensive operations.

= 3D volumes with at least 10003 voxels. Already at this
resolution, W has O(10'2) entries = TB's!

= Can not be stored explicitely, instead generated from the

acquisition geometry.
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Large-scale tomography (cont.)

= We want to parallelize the forward projection and backward
projection operations

= How to distribute W? Naive choices lead to prohibitively large
communication sizes

= Available sparse matrix partitioning methods do not apply,
since the hypergraph models are at least of size O(nnz(A)).
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Geometric partitioning

= We exploit the geometric structure of the problem to find a
partitioning3

= Generate a cuboid partitioning of the object volume,
corresponding to a 1D column partitioning

= The communication volume is equal to the total /ine cut, the

number of interfaces between parts crossed by a ray.

% Joint work with Rob Bisseling (UU) and Joost Batenburg (CWI)
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Example
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Recursive bisectioning

= |dea: Split the volume into two subvolumes recursively.

Theorem
Let YV =V1 U...UV, be a cuboid partitioning. Then for any
acquisition geometry G we have:

Vg(Vl,Vz, .. ,Vn) = Vg(Vl,Vz, N VR Vn) + Vg(anl,Vn).

= Conclusion: recursively bisecting is OK
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Bisectioning algorithm

= Choose the splitting interface with the minimum number of
rays passing through it

= Evenly distribute the computational work

= Imagine sweeping a candidate interface along the volume, keep
track of the current number of rays passing through. Only
changes at coordinates where a line intersects the boundary!
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Plane sweep
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Acquisition geometries
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Results (SAPB)
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Results (CCBn)
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Results (HCB)




Results (LAMn)
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Results (LAMw)
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Results (TSYN)

k=1
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<Partitioning movie>
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Results (Communication volume)

= Results for p = 256

Geometry V (slab) V (grb) Improvement

SAPB 0 0 0%

DAPB 1x10% 8x108 92%
CCBn 1x10° 3x10® 69%
CCBw 2x10° 4x10® 82%
HCB 2x10° 4x108 71%
LAMn 3x10° 4x10% 89%
LAMw 5x10° 6 x 108 90%
TSYN 2x10° 3x108 87%
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Results (Communication
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Thank you

Questions?
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