Sparse Matrix Partitioning

Jan-Willem Buurlage, CWI Amsterdam Tomography seminar, DTU

Dense matrix-vector multiplication (GEMV)

Sparse matrix-vector multiplication (SpMV)

Parallel SpMV

- When performing an SpMV in parallel, we distribute the data $(A, \mathbf{x}, \mathbf{y})$ over processing elements.
- The distribution of the nonzeros of A are leading; the distribution of x and y follow.
- Two types of partitionings:
 - assign entire rows (or columns) to a single processor (1D partitioning).
 - treat all nonzeros independently (2D partitioning).

Distribution example

Distribution example (blue processor)

Parallel SpMV (Summary)

 $A\mathbf{x} = \mathbf{y}$, from the viewpoint of processor $1 \le s \le p$:

- 1. Obtain the required non-local components of x (fan-out).
- 2. Compute the partial sums $(u_i)_s$ (local SpMV).
- 3. Communicate each non-local partial sum (fan-in).
- 4. Compute the local components of \mathbf{y} using the received partial sums (reduction operation).

Partitioning quality

- Question: what makes a distribution good?
- Roughly the same number of nonzeros to each processor:

$$|A_s| \le (1+\epsilon) \frac{|A|}{p}$$

Minimize communication volume V:

$$V = \underbrace{\sum_{j=1}^{n} (\mu_j - 1)}_{\text{fan-out}} + \underbrace{\sum_{i=1}^{m} (\lambda_i - 1)}_{\text{fan-in}},$$

where λ_i denotes the number of processors that hold a portion of the *i*th row, and similarly μ_i for the *j*th column.

Communication volume

• karate: optimal is V=8

Hypergraph models

- We want to find a p-way partitioning of A while minimizing V.
- Look at hypergraph structures H associated to the sparsity pattern of the matrix A.

Definition

A hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{N})$ is a set of vertices \mathcal{V} , together with a set of nets \mathcal{N} with $n_i \in \mathcal{N}$ a subset of \mathcal{V} .

Hypergraph models (cont.)

- We model the matrix A as a set of vertices V, and want to find a p-way partitioning of V.
- We consider three different models:

name	vertices	nets
row-net	columns	rows
column-net	rows	columns
fine-grain	nonzeros	rows and columns

Hypergraph partitioning

Hypergraph partitioning

• $(\lambda - 1)$ -metric of a hypergraph partitioning:

$$V = \sum_{n \in \mathcal{N}} (\lambda(n) - 1),$$

where $\lambda(n)$ counts the number of non-empty parts in the net n.

■ The communication volume of a 1D row, 1D column or 2D partititioning of A is equal to the $(\lambda - 1)$ -metric of the column-net, row-net or fine-grain model respectively.

Label propagation on graphs

- Goal: Given a graph G = (V, E), obtain a p-way partitioning that minimizes the edge-cut (i.e. the number of edges between different parts).
- Use label propagation. Here we describe a version of the PULP algorithm¹:
 - Assign to each $v \in V$ a random label $L(v) \in \{1, ..., p\}$.
 - Consider each vertex v in turn, and update to the majority label amongst its neighbours. Ties are broken randomly.

¹Slota, Madduri, and Rajamanickam '14

Label propagation (1)

Label propagation (2)

Label propagation (3)

Label propagation (4)

Label propagation (5)

Label propagation for graph partitioning

• Update the label of $v \in V$ by counting the labels around it:

$$C_s(v) = \sum_{(v,u)\in E} \mathbf{1}_s(L(u)).$$

Form clusters around vertices of high degree, in the hope that vertices of low degree end up at the boundary of a part:

$$C_s(v) = \sum_{(v,u)\in E} \mathbf{1}_s(L(u)) \times \deg(u).$$

 Prevent the algorithm from assigning a single label to all vertices by also taking into account the current size of a part.

Label propagation on hypergraphs

We generalize this method to hypergraphs²:

C_s takes the following form, with w a weight function that has to be chosen:

$$C_s(v) = \sum_{n \in \mathcal{N}_v} w(n, s).$$

- For the LV-metric, w should encode two key ideas:
 - Do not introduce new labels to a net, and try to eliminate uncommon labels.
 - When net is almost pure differently labeled vertices should strongly prefer taking over the majority label.

 $^{^2\}mathsf{Self}\text{-}\mathsf{Improving}$ Sparse Matrix Partitioning and Bulk-Synchronous Pseudo-Streaming, MSc Thesis, JB

Label propagation on hypergraphs

- Relative size of label s in net n: $|\{v \in n \mid L(v) = s\}|/|n|$.
- Scale the relative size T to lie in the range [-1,1]. T(n,s) equal to -1 or 1 means none or all vertices have label s respectively.
- Take w as a function of T

w(T)

Initial partitioning

- Small nets are most easily kept pure, ignore larger nets at first.
- We construct a chain of growing hypergraphs:

$$A_0 \subset A_1 \subset A_2 \subset \ldots \subset A_M = \mathcal{H}.$$

Here, $A_i = \{V, N_i\}$, and N_i can be taken to hold e.g. the 2^i smallest nets.

Label propagation based hypergraph partitioning

- Begin with some initial partitioning, e.g. distribute the vertices cyclically.
- For the first $1 \le i < M$ iterations, consider each vertex $v \in \mathcal{V}$ in turn. Choose the label s that maximizes $C_s(v)$ in the hypergraph \mathcal{A}_i , and assign to v this label.
- For $i \ge M$ we put $A_i = \mathcal{H}$, and we perform this label propagation on the entire hypergraph \mathcal{H} .

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Tomography

Tomographic reconstruction

• *Projection matrix W*, solve:

$$W\mathbf{x}=\mathbf{b}$$
,

with \mathbf{x} the *image*, and \mathbf{b} the *projection data*.

- Rays, from the source to a detector pixel, define rows. Each column of the matrix is a volume element, or voxel.
- Each intersection of a ray with a voxel, gives rise to a nonzero in W. Note: W is sparse, with n voxels we have $\mathcal{O}(n^{1/3})$ nonzeros in each row.
- For each projection image, we obtain a block of rows.

Example

Large-scale tomography

- For tomographic reconstruction, the SpMV's W**x** and W^T**y** are the most expensive operations.
- 3D volumes with at least 1000^3 voxels. Already at this resolution, W has $\mathcal{O}(10^{12})$ entries \Rightarrow TB's!
- Can not be stored explicitely, instead generated from the acquisition geometry.

Large-scale tomography (cont.)

- We want to parallelize the forward projection and backward projection operations
- How to distribute W? Naive choices lead to prohibitively large communication sizes
- Available sparse matrix partitioning methods do not apply, since the hypergraph models are at least of size $\mathcal{O}(\operatorname{nnz}(A))$.

Geometric partitioning

- We exploit the geometric structure of the problem to find a partitioning³
- Generate a cuboid partitioning of the object volume, corresponding to a 1D column partitioning
- The communication volume is equal to the total *line cut*, the number of interfaces between parts crossed by a ray.

 $^{^3}$ Joint work with Rob Bisseling (UU) and Joost Batenburg (CWI)

Example

Recursive bisectioning

• Idea: Split the volume into two subvolumes recursively.

Theorem

Let $V = V_1 \cup \ldots \cup V_n$ be a cuboid partitioning. Then for any acquisition geometry G we have:

$$V_{\mathcal{G}}(\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_n) = V_{\mathcal{G}}(\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_{n-1} \cup \mathcal{V}_n) + V_{\mathcal{G}}(\mathcal{V}_{n-1}, \mathcal{V}_n).$$

Conclusion: recursively bisecting is OK

Interface intersection

Bisectioning algorithm

- Choose the splitting interface with the minimum number of rays passing through it
- Evenly distribute the computational work
- Imagine sweeping a candidate interface along the volume, keep track of the current number of rays passing through. Only changes at coordinates where a line intersects the boundary!

Plane sweep

Acquisition geometries

Results (SAPB)

Results (DAPB)

Results (CCBn)

Results (CCBw)

Results (HCB)

Results (LAMn)

Results (LAMw)

Results (TSYN)

Movie

<Partitioning movie>

Results (Communication volume)

• Results for p = 256

Geometry	V (slab)	V (grb)	Improvement
SAPB	0	0	0%
DAPB	1×10^{10}	8×10^8	92%
CCBn	1×10^9	3×10^8	69%
CCBw	2×10^9	4×10^8	82%
HCB	2×10^9	4×10^8	71%
LAMn	3×10^9	4×10^8	89%
LAMw	5×10^9	6×10^8	90%
TSYN	2×10^9	3×10^8	87%
	·		·

Results (Communication time)

Thank you

Questions?