
Modern BSP

Jan-Willem Buurlage, CWI, Amsterdam

Prepared for MasterMath course Parallel Algorithms, 2017-09-27

1

BSP today

• BSP is still the leading model for distributed computing, used
in industry.

• MapReduce

• Pregel

• BSP programming usually done using MPI or the various

Apache projects (Hama, Giraph, Hadoop).

• BSPlib provides an accessible way to familiarize yourself with

parallel programming.

2

Google’s MapReduce (Example)1

• Classic example: word count. The map takes (file, content)

pair, and emits (word, 1) pairs for each word in the content.

The reduce function sums over all mapped pairs with the

same word.

• The Map and Reduce are performed in parallel, and are both

followed by communication and a bulk synchronization, which

means MapReduce ⊂ BSP!

1MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean and

Sanjay Ghemawat (2004)

3

Google’s Pregel

BSP for graph processing, used by Google2 and Facebook3:

“The high-level organization of Pregel programs is

inspired by Valiant’s Bulk Synchronous Parallel model.

Pregel computations consist of a sequence of iterations,

called supersteps ... It can read messages sent to V in

superstep S − 1, send messages to other vertices that will

be received at superstep S + 1 ...”

2Pregel: A System for Large-Scale Graph Processing – Malewicz et al. (2010)
3One Trillion Edges: Graph Processing at Facebook-Scale - Avery Ching et al

(2015).

4

Modern BSP

• These frameworks are good for big data analytics, too limiting

for general purpose scientific computing

• =⇒ Most scientific software built with MPI

• Modern languages have features (safety, abstractions) which

can aid parallel programming. Full power of BSP not yet

available in such a language.

5

Bulk

5th most cited xkcd4

4https://xkcdref.info/statistics/

6

Introduction

• Bulk is a BSP library for modern C++

• Provides a safe and simple layer on top of low-level

technologies, user can avoid dealing with the transport layer.

• BSPlib already improves upon MPI in this regard.

7

Goals of Bulk

• Unified and modern interface for distributed and parallel

computing.

• Works accross a wide variety of platforms, flexible backends.

• Shorter, safer, makes it easier to write (correct) programs.

8

BSPlib vs Bulk: Hello world

#include <bsp.h>

int main() {
bsp_begin(bsp_nprocs());
int s = bsp_pid();
int p = bsp_nprocs();
printf("Hello World from processor %d / %d", s, p);
bsp_end();

return 0;
}

9

BSPlib vs Bulk: Hello world

#include <bulk/bulk.hpp>
#include <bulk/backends/mpi/mpi.hpp>

int main() {
bulk::mpi::environment env;
env.spawn(env.available_processors(), [](auto& world) {
auto s = world.rank();
auto p = world.active_processors();

world.log("Hello world from processor %d / %d!", s, p);
});

}

10

BSPlib vs Bulk: Registering variables

// BSPlib
int x = 0;
bsp_push_reg(&x, sizeof(int));
bsp_sync();
...
bsp_pop_reg(&x);

// Bulk
auto x = bulk::var<int>(world);

11

BSPlib vs Bulk: Simple distributed variables

// BSPlib
int b = 3;
bsp_put(t, &b, &x, 0, sizeof(int));

int c = 0;
bsp_get(t, &x, 0, &c, sizeof(int));

bsp_sync();

// Bulk
x(t) = 3;
auto c = x(t).get();

world.sync();

12

BSPlib vs Bulk: Distributed arrays

// BSPlib
int* xs = malloc(10 * sizeof(int));
bsp_push_reg(xs, 10 * sizeof(int));
bsp_sync();

int ys[3] = {2, 3, 4};
bsp_put(t, ys, xs, 2, 3 * sizeof(int));
int z = 5;
bsp_put(t, &z, xs, 0, sizeof(int));

bsp_sync();

...

bsp_pop_reg(xs);
free(xs);

13

BSPlib vs Bulk: Distributed arrays

// Bulk
auto xs = bulk::coarray<int>(world, 10);
xs(t)[{2, 5}] = {2, 3, 4};
xs(t)[0] = 5;

world.sync();

14

BSPlib vs Bulk: Message passing

// BSPlib
int s = bsp_pid();
int p = bsp_nprocs();

int tagsize = sizeof(int);
bsp_set_tagsize(&tagsize);
bsp_sync();

int tag = 1;
int payload = 42 + s;
bsp_send((s + 1) % p, &tag, &payload, sizeof(int));
bsp_sync();

int packets = 0;
int accum_bytes = 0;
bsp_qsize(&packets, &accum_bytes);

int payload_in = 0;
int payload_size = 0;
int tag_in = 0;
for (int i = 0; i < packets; ++i) {

bsp_get_tag(&payload_size, &tag_in);
bsp_move(&payload_in, sizeof(int));
printf("payload: %i, tag: %i", payload_in, tag_in);

}
15

BSPlib vs Bulk: Message passing

// Bulk
auto s = world.rank();
auto p = world.active_processors();

auto q = bulk::queue<int, int>(world);
q(world.next_rank()).send(1, 42 + s);
world.sync();

for (auto [tag, content] : queue) {
world.log("payload: %i, tag: %i", content, tag);

}

16

Bulk: Addtional features

// Generic queues
auto q = bulk::queue<int, int, int, float[]>(world);
q(t).send(1, 2, 3, {4.0f, 5.0f, 6.0f});
world.sync();

for (auto [i, j, k, values] : queue) {
// ...

}

// Standard containers
std::sort(q.begin(), q.end());

auto maxs = bulk::gather_all(world, max);
max = *std::max_element(maxs.begin(), maxs.end());

// Skeletons
// result_1 + result_2 + ... + result_p
auto alpha = bulk::foldl(result, std::plus<int>());

17

Summary of Bulk

• Modern interface for writing parallel programs, safer and

clearer code

• Works together with other libraries because of generic

containers and higher-level functions.

• Works across more (mixed!) platforms than competing

libraries (because of the backend mechanism).

• Open-source, MIT licensed. Documentation at

jwbuurlage.github.io/Bulk. Joint work with Tom

Bannink (CWI).

18

BSP on Exotic Systems

Parallella

• ‘A supercomputer for everyone, with the lofty goal of

“democratizing access to parallel computing’

• Crowd-funded development board, raised almost $1M in 2012.

20

Epiphany co-processor

• N × N grid of RISC processors, clocked by default at 600

MHz (current generations have 16 or 64 cores).

• Efficient communication network with ‘zero-cost start up’

communication. Asynchronous connection to external memory

pool using DMA engines (used for software caching).

• Energy efficient @ 50 GFLOPs/W (single precision), in 2011,

top GPUs about 5× less efficient.

21

Epiphany memory

• Each Epiphany core has 32 kB of local memory, on 16-core

model 512 kB available in total.

• On each core, the kernel binary and stack already take up a

large section of this memory. Duplication.

• On the Parallella, there is 32 MB of external RAM shared

between the cores, and 1 GB of additional RAM accessible

from the ARM host processor.

22

Many-core co-processors

• Applications: Mobile, Education, possibly even HPC.

• Specialized (co)processors for AI, Computer Vision gaining

popularity.

• KiloCore (UC Davis, 2016). 1000 processors on a single chip.

• Bulk provides the same interface for programming the

Epiphany co-processor as for programming distributed

computer clusters! BSP algorithms can be used for this

platform when modified slightly for streamed data5.

5JB, Tom Bannink, Abe Wits. Bulk-synchronous pseudo-streaming algorithms

for many-core accelerators. arXiv:1608.07200 [cs.DC], 2016

23

Epiphany BSP

• Parallella: powerful platform, especially for students and

hobbyists. Suffers from poor tooling.

• Epiphany BSP, implementation of the BSPlib standard for the

Parallella.

• Custom implementations for many rudimentary operations:

memory management, printing, barriers.

25

Hello World: ESDK (124 LOC)

// hos t

const uns igned ShmSize = 128 ;

const char ShmName [] = ” he l l o s hm ” ;

const uns igned SeqLen = 20 ;

i n t main (i n t argc , char ∗a rgv [])

{
uns igned row , co l , c o r e i d , i ;

e p l a t f o rm t p l a t f o rm ;

e e p i p h a n y t dev ;

e mem t mbuf ;

i n t r c ;

s r and (1) ;

e s e t l o a d e r v e r b o s i t y (H D0) ;

e s e t h o s t v e r b o s i t y (H D0) ;

e i n i t (NULL) ;

e r e s e t s y s t em () ;

e g e t p l a t f o rm i n f o (&p l a t f o rm) ;

r c = e s hm a l l o c (&mbuf , ShmName ,

ShmSize) ;

i f (r c != E OK)

r c = e shm at tach (&mbuf , ShmName

) ;

// . . .

// k e r n e l

i n t main (vo id) {
const char ShmName [] = ”

he l l o s hm ” ;

const char Msg [] = ” He l l o

World from co r e 0x%03x ! ” ;

char buf [2 5 6] = { 0 } ;
e c o r e i d t c o r e i d ;

e memseg t emem ;

uns igned my row ;

uns igned my co l ;

// Who am I ? Query the CoreID from

hardware .

c o r e i d = e g e t c o r e i d () ;

e c o o r d s f r om c o r e i d (c o r e i d , &my row

, &my co l) ;

i f (E OK != e shm at tach (&emem,

ShmName)) {
r e t u r n EXIT FAILURE ;

}

s n p r i n t f (buf , s i z e o f (buf) , Msg ,

c o r e i d) ;

// . . . 26

Hello World: Epiphany BSP (18 LOC)

// hos t

#inc l u d e <ho s t b sp . h>

#inc l u d e <s t d i o . h>

i n t main (i n t argc , char∗∗ a rgv) {
b s p i n i t (” e h e l l o . e l f ” , argc , a rgv) ;

b s p b eg i n (b sp np ro c s ()) ;

ebsp spmd () ;

bsp end () ;

r e t u r n 0 ;

}

// k e r n e l

#inc l u d e <e b sp . h>

i n t main () {
b sp beg i n () ;

i n t n = bsp np ro c s () ;

i n t p = bsp p i d () ;

e b s p p r i n t f (” He l l o wor ld from co r e %

d/%d” , p , n) ;

bsp end () ;

r e t u r n 0 ;

}

27

BSP on low-memory

• Limited local memory, classic BSP programs can not run.

• Primary goal should be to minimize communication with

external memory.

• Many known performance models can be applied to this

system (EM-BSP, MBSP, Multi-BSP), no portable way to

write/develop algorithms.

28

BSP accelerator

• We view the Epiphany processor as a BSP computer with

limited local memory of capacity L.

• We have a shared external memory unit of capacity E , from

which we can read data asynchronously with inverse

bandwidth e.

• Parameter pack: (p, r , g , l , e, L,E).

29

Parallella as a BSP accelerator

• p = 16, p = 64

• r = (600× 106)/5 = 120× 106 FLOPs(∗)

• l = 1.00 FLOP

• g = 5.59 FLOP/word

• e = 43.4 FLOP/word

• L = 32 kB

• E = 32 MB

(*): In practice one FLOP every 5 clockcycles, in theory up to 2 FLOPs per

clockcycle.

30

External data access: streams

• Idea: present the input of the algorithm as streams for each

core. Each stream consists of a number of tokens.

• The ith stream for the sth processor:

Σs
i = (σ1, σ2, . . . , σn)

• Tokens fit in local memory: |σi | < L.

• We call the BSP programs that run on the tokens loaded on

the cores hypersteps.

32

Structure of a program

• In a hyperstep, while the computation is underway, the next

tokens are loaded in (asynchronously).

• The time a hyperstep takes is either bound by bandwidth or

computation.

• Our cost function:

T̃ =
H−1∑
h=0

max

(
Th, e

∑
i

Ci

)
.

Here, Ci is the token size of the ith stream, and Th is the

(BSP) cost of the hth hyperstep.

33

Pseudo-streaming

• In video-streaming by default the video just ‘runs’. But viewer

can skip ahead, rewatch portions. In this context referred to

as pseudo-streaming.

• Here, by default the next logical token is loaded in. But

programmer can seek within the stream.

• This minimizes the amount of code necessary for

communication with external memory.

• We call the resulting programs bulk-synchronous

pseudo-streaming algorithms.

34

BSPlib extension for streaming

// host

void* bsp_stream_create(

int processor_id,

int stream_size,

int token_size,

const void* initial_data);

// kernel

int bsp_stream_open(int stream_id);

int bsp_stream_close(int stream_id);

35

BSPlib extension for streaming (2)

int bsp_stream_move_down(

int stream_id,

void** buffer,

int preload);

int bsp_stream_move_up(

int stream_id,

const void* data,

int data_size,

int wait_for_completion);

void bsp_stream_seek(

int stream_id,

int delta_tokens);

36

Example 1: Inner product

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

~v

~v (0) ~v (1) ~v (2)

Σ0
~v

(σ0~v)1 (σ0~v)2

38

Example 1: Inner product (cont.)

• Input: vectors ~v , ~u of size n

• Output: ~v · ~u =
∑

i viui .

1. Make a p-way distribution of ~v , ~w (e.g. in blocks), resulting in

subvectors ~v (s) and ~u(s).

2. These subvectors are then split into tokens that each fit in L.

We have two streams for each core s:

Σs
~v = ((σs~v)1, (σ

s
~v)2, . . . , (σ

s
~v)H),

Σs
~u = ((σs~u)1, (σ

s
~u)2, . . . , (σ

s
~u)H).

3. Maintain a partial answer αs throughout the algorithm, add

(σs~v)h · (σs~u)h in the hth hyperstep. After the final tokens, sum

over all αs .

39

Example 2: Matrix multiplication

• Input: Matrices A,B of size n × n

• Output: C = AB

We decompose the (large) matrix multiplication into smaller

problems that can be performed on the accelerator (with N × N

cores). This is done by decomposing the input matrices into

M ×M outer blocks, where M is chosen suitably large.

AB =

A11 A12 . . . A1M

A21 A22 . . . A2M

...
...

. . .
...

AM1 AM2 . . . AMM

B11 B12 . . . B1M

B21 B22 . . . B2M

...
...

. . .
...

BM1 BM2 . . . BMM

40

Example 2: Matrix multiplication (cont.)

We compute the outer blocks of C in row-major order. Since:

Cij =
M∑
k=1

AikBkj ,

a complete outer block is computed every M hypersteps, where in

a hyperstep we perform the multiplication of two outer blocks of A

and B.

Each block is again decomposed into inner blocks that fit into a
core:

Aij =

(Aij)11 (Aij)12 . . . (Aij)1N

(Aij)21 (Aij)22 . . . (Aij)2N
...

...
. . .

...

(Aij)N1 (Aij)N2 . . . (Aij)NN

 .

41

Example 2: Matrix multiplication (cont.)

The streams for core (s, t) are the inner blocks of A that belong to

the core, laid out in row-major order, and the inner blocks of B in

column-major order.

ΣA
st =(A11)st(A12)st . . . (A1M)st︸ ︷︷ ︸

� M times

(A21)st(A22)st . . . (A2M)st︸ ︷︷ ︸
� M times

. . . (AM1)st(AM2)st . . . (AMM)st︸ ︷︷ ︸
� M times

,

ΣB
st =(B11)st(B21)st . . . (BM1)st(B12)st(B22)st

. . . (BM2)st(B13)st . . . (B1M)st(B2M)st . . . (BMM)st︸ ︷︷ ︸
� M times

.

42

Example 2: Matrix multiplication (cont.)

In a hyperstep a suitable BSP algorithm (e.g. Cannon’s algorithm)

is used for the matrix multiplication on the accelerator.

We show that the cost function can be written as:

T̃cannon = max

(
2
n3

N2
+

2Mn2

N
g + NM3l , 2

Mn2

N2
e

)
.

43

Thanks

If you want to do your final project on something related to

Epiphany BSP and/or Bulk, let me know!

44

	BSP on Exotic Systems
	Parallella
	Epiphany BSP
	Streams
	Examples

